Class IX - Winter Holiday Worksheet

1. Show that the points $\mathrm{A}(1,2), \mathrm{B}(-1,-6), \mathrm{C}(0,-7)$ lie on the graph of the linear equation $y=9 x+7$.
2. If the point $(2,-2)$ lies on the graph of linear equation $5 x+a y=4$, find the value of a.
3. Draw the graph of the linear equation $5 x+6 y=30$. Write the coordinates of the points where this line intersects the x -axis and the y -axis. Also use this graph to find the area of triangle formed by the line and the coordinate axes.
4. The present age of a girl is two fifth the age of her father. Express this statement as a linear equation in two variables. Also find from the graph
a) the age of the girl when the father is 40 years
b) the age of father when the girl is 22 years.
5. In a class of 45 students , the marks obtained in a weekly test are as follows:

Marks	$16-20$	$21-25$	$26-30$	$31-35$	$36-40$	$41-45$	$46-50$
No. of students	2	9	6	7	13	5	3

Draw a frequency polygon for the following data.
6. P and Q are the midpoints of the opposite sides AB and CD of a parallelogram $\mathrm{ABCD} . \mathrm{AQ}$ intersects DP at S and BQ intersects CP at R. Show that PQRS is a parallelogram.
7. P is the midpoint of the side CD of a parallelogram ABCD . A line through C parallel to PA intersects $A B$ at Q and $D A$ produced at R. Prove that $D A=A R$ and $C Q=Q R$.
8. E is the midpoint of a median AD of $\triangle \mathrm{ABC}$ and BE is produced to meet AC at F . Show that $\mathrm{AF}=\frac{1}{3} \mathrm{AC}$.
9. In the figure, AB and CD are two parallel chords of a circle with centre O and radius 5 cm such that $A B=8 \mathrm{~cm}$ and $C D=6 \mathrm{~cm}$. If $O P$ is perpendicular to $A B$ and $O Q$ is perpendicular to CD , determine the length of PQ .

10. EFGH is a rectangle. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are mid-points of the sides $\mathrm{EF}, \mathrm{FG}, \mathrm{GH}$ and EH respectively. Show that $A B C D$ is a rhombus.
11. In the figure, $A B C$ is an isosceles triangle in which $A B=A C, C D \| A B$ and $A D$ is the bisector of the exterior angle $C A E$ of $\triangle A B C$. Prove that $\angle C A D=\angle B C A$ and $A B C D$ is a parallelogram.

12. In the figure, $A B C D$ is a quadrilateral in which $A B=B C$ and $A D=C D$. Prove that
(i) $\quad \triangle \mathrm{ABD}$ is congruent to $\triangle \mathrm{CBD}$
(ii) $\quad \mathrm{BD}$ is the bisector of $\angle \mathrm{ABC}$ and $\llcorner\mathrm{ADC}$
(iii) $\triangle \mathrm{AOD}$ is congruent to $\triangle \mathrm{COD}$
(iv) $\angle \mathrm{AOD}=\llcorner\mathrm{COD}=1$ right angle.

