1) Find the rules of equation $x^{2}-3 x-(m+3)=0$
2) Solve: $x^{2}-5 x+3=0$
3) Find the second term of AP whose sum of the m terms is given by $2 m^{2}+3 m$.
4) Find the value of p for which the roots of the equation $p x(x-2)+6=0$, are equal.
5) How many two-digit numbers are divisible by 3 ?
6) Find the value of k, if the point $P(2,4)$ is equidistant from the point $A(5,8)$ and $B(k, 7)$.
7) The angle of depression of the top and bottom of a tower as seen from the top of a 60 m cliff are 45° and 60° respectively. Find the height of the tower.
8) Draw a triangle $A B C$ with sides $B C=7 \mathrm{~cm}, A B=6 \mathrm{~cm}$ and angle $A B C=60^{\circ}$. construct a triangle whose sides are $3 / 4$ of the corresponding sides of triangle $A B C$. Also write steps of construction.
9) A sum of rupees 1400 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is rupees 40 less than the preceding prize, find the value of each of the prizes.
10) Determine the ratio in which the line $3 x+y-9=0$ divides the line segment joining the points $(1,3)$ and $(2,7)$.
11) Two tangents $P A$ and $P B$ are drawn from an external point P to a circle with the centre 0 .
12) Find the relation between x and y such that the point $P(x, y)$ is equidistant from the points $A(1,4)$ and $B(-1,2)$.
13) The sum of $5^{\text {th }}$ and $9^{\text {th }}$ terms of an AP is 72 and the sum of $7^{\text {th }}$ and $12^{\text {th }}$ term is 27 . Find the AP
14) The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with the complementary. Prove that the height of the tower is 6 m .
15) Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.
16) Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
17) Two poles of equal heights are standing opposite to each other on either side of the road which is 100 m wide from a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively, Find the height of the poles.
18) Solve for $\mathrm{x}: \frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x} ; \mathrm{a} \neq 0, \mathrm{~b} \neq 0, \mathrm{x} \neq 0$
19) Solve for $\mathrm{x}: \frac{x-1}{x-2}+\frac{x-3}{x-4}=3 \frac{1}{3}$, where $\mathrm{x} \neq 2,4$
20) A train travels a distance of 480 km at a uniform speed. If the speed had been $8 \mathrm{~km} / \mathrm{h}$ less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.
21) From the top of a 7 m high building, the angles of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 30°. Determine the height of the tower.
22) The angle of elevation of an aeroplane from a point A on the ground is 60°. After a flight of 30 seconds, the angle of elevation changes to 30°. If the plane is flying at the height of $3600 \sqrt{3} \mathrm{~m}$, find the speed of the plane in $\mathrm{km} / \mathrm{hr}$.
\&
