INDIAN SCHOOL AL WADI AL KABIR

MATHEMATICS (CLASS XI)

HOLIDAY HOMEWORK

Dt. 13 $^{\text {th }}$ Dec ${ }^{15}$

QUESTIONS

1. If $S_{n}=n^{2} p$ and $S_{m}=m^{2} p, m \neq n$, in A.P., prove that $S_{p}=p^{3}$.
2. The sum of three numbers which are consecutive terms of an A.P. is 21 . If the second number is reduced by 1 and the third is increased by 1 , we obtain three consecutive terms of a G.P. Find the numbers.
3. The sum of three numbers a, b, c in A.P. is 18 . If a and b are each increased by 4 and c increased by 36 , the new numbers form a G.P. Find a, b, c.
4. If a, b, c are in G.P., then prove that : $\frac{a^{2}+a b+b^{2}}{b c+c a+a b}=\frac{b+a}{c+b}$.
5. Find the sum the series to n terms : $3+5+9+15+23+\ldots .$.
6. Prove that the lines $2 x+3 y=19$ and $2 x+3 y+7=0$ are equidistant from the line $2 x+3 y=6$.
7. If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4$. Find the value of m.
8. One side of a rectangle lies on the line $4 x+7 y+5=0$. Two of its vertices are $(-3,1)$ and $(1,1)$. Find the equations of the other three sides.
9. The points $(1,3)$ and $(5,1)$ are the opposite vertices of a rectangle. The other two vertices lie on th $y=2 x+c$.Find c and the other two vertices.
10. The diagonal of a square lies along the line $8 x-15 y=0$ and one vertex of the square is $(1,2)$. Find the equations of the sides of the square passing through its vertex.
11. *Find the equation of the circle having centre at $(a \cos \theta, a \sin \theta)$ and radius a.
12. *Show that the radii of the circles $x^{2}+y^{2}=1, x^{2}+y^{2}-2 x-6 y-6=0$ and $x^{2}+y^{2}-4 x-12 y-9=0$ are in A.P.
13. *Find the equation of the circle which passes through the points $(2,3)$ and $(-1,1)$ and whose centre is in the line $x-3 y-11=0$.
14. *For the ellipse $3 x^{2}+2 y^{2}=18$, find the length of major and minor axes, foci, vertices and the eccentricity.
15. Find the equation of the ellipse having foci $(\pm 3,0)$ and passing through $(4,1)$.
16. Find the equation of the line passing through the intersection of lines $x+y+1=0$ and $x-y+1=0$ and whose distance from the origin is 1.
17. Find the equation of the hyperbola (with foci along x-axis), the length of whose latus rectum is 8 and eccentricity is $\frac{3}{\sqrt{5}}$.
18. *Find the eccentricity of the hyperbola with foci on the x axis of the length of its conjugate axis is (3/4) of the length of its transverse axis.
19. Find the equation of the ellipse satisfying the conditions
a) vertices at $(0, \pm 10), e=4 / 5$
b) Foci at $(\pm 2,0), e=1 / 2$.
20. Find the equation of the circle having line segment, with end points $(0,-1)$ and $(2,3)$ as diameter.

Evaluate each of the following limits

21. $\lim _{x \rightarrow 0} \frac{\sqrt[3]{8+x}-2}{x}$
22. $\lim _{x \rightarrow 1} \frac{x^{2}-\sqrt{x}}{\sqrt{x}-1}$
23. $\lim _{x \rightarrow 0} \frac{1-\cos m x}{1-\cos n x}$
24. $\lim _{x \rightarrow 5} \frac{(x-3)^{5}-32}{x-5}$
25. $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{(\pi-2 x)^{2}}$
26. $\lim _{x \rightarrow 2} \frac{e^{x}-e^{2}}{x-2}$
27. $\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1-2 x}}{\sin x}$
28. $\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{x^{2}}$
29. Find all the possible values of a if
$\lim _{x \rightarrow a} \frac{x^{9}-a^{9}}{x-a}=\lim _{x \rightarrow 5} 4+x$
30. Evaluate the left hand and right hand limits of the following function at $x=1$
$f(x)=\left\{\begin{array}{c}1+x^{2}, 0 \leq x \leq 1 \\ 2-x, x \geq 1\end{array}\right.$.Does $\lim _{x \rightarrow 1} f(x)$

Differentiate each of the following functions with respect to x
31. $y=\sqrt{\frac{1+\sin x}{1-\sin x}}$
32. $y=\tan \sqrt{x^{3}+x+1}$
33. $y=\frac{x+\cos x}{\tan x}$
34. $y=(a x+b)^{n}(c x+d)^{m}$
35. If $f(x)=\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}$, find $f^{\prime}\left(\frac{\pi}{4}\right)$.
36. If $y=x \sin x$, prove that $\frac{1}{y} \frac{d y}{d x}-\frac{1}{x}=\cot x$.
37. For the function f, given by $f(x)=x^{2}-6 x+8$, prove that $f^{\prime}(5)-3 f^{\prime}(2)=f^{\prime}(8)$.

