Q. 1 Draw triangle $A B C$ where vertices are $A(0,5) ; B(-6,-6)$ and $C(6,-6)$

On the graph paper and find its area.
Q. 2 In which quadrant or on which axis do each of the points $\mathrm{H}(9,0)$
$\mathrm{J}(-5,-5), \mathrm{K}(4,3), \mathrm{L}(-2,4), \mathrm{M}(8,-6) \quad \mathrm{N}(0,6)$
Q. 3 Plot the points $A(-4,4), B(-6,0), C(-4,-4)$ and $D(-2,0)$.Join $A B, B C, C D$ and DA Name the shape obtained .Also find its area.

Q4. Find the degree of the polynomial: $\frac{x^{3}+x^{4}-x^{6}}{x^{2}}$
Q. 5 Find zeroes of the polynomials in each case ,
i) $P(x)=2 x+8$
ii) $P(x)=6 x-8$
iii) $P(x)=a x+b$
Q. 6 If $P(x)=2 x^{3}+4 x^{2}-8 x-15$ is divided by $g(x)=x-1$.find quotient and remainder by long division method.
Q. 7 If $P(x)=x^{3}-m x^{2}-x+6$ is divisible by $g(x)=x-2$ find the value of ' m '
Q. 8 In the figure below $1 / / \mathrm{m} / / \mathrm{n}$ and line ' a ' is perpendicular to them .find $\mathrm{x}, \mathrm{y}, \mathrm{z}$.

Q. 9 In the figure below ABC is an equilateral triangle .The coordinates of vertices B and C are $(3,0)$ and $(-3,0)$ respectively find the coordinates of its vertex A

Q. 10 in the given figure lines $1 / / m / / n$. From the figure find the value of $(y+x):(y-x)$

Q. 11 In the given figure PS is the bisector of $\angle \mathrm{QPR}$ and PT is perpendicular to QR . Show that $\angle \mathrm{TPS}=\frac{1}{2}(\angle \mathrm{R}-\angle \mathrm{Q})$

2 | INDIAN SCHOOL AL WADI AL KABIR / Dept. of Mathematics/Class IX / Holiday Homework, SET 2
Q. 12 In triangle $P Q R$,bisectors of exterior angles at Q and R meet at M Then prove that $\angle \mathrm{RMQ}=90^{\circ}-\frac{1}{2} \angle \mathrm{P}$

Q.13. In the figure given below BE is the bisector of $\angle \mathrm{ABC}$ and CE is the bisector of $\angle A C D$.

Prove that $\angle \mathrm{BEC}=\frac{1}{2} \angle \mathrm{~A}$

3| INDIAN SCHOOL AL WADI AL KABIR / Dept. of Mathematics/Class IX / Holiday Homework, SET 2
Q. 14 In $\triangle \mathrm{ABC} \angle \mathrm{B}>\angle \mathrm{C}$, bisector of $\angle \mathrm{A}$ meet BC at D and AE perpendicular to BC . Prove that $2 \angle \mathrm{DAE}=(\angle \mathrm{B}-\angle \mathrm{C})$
Q. 15 In the figure $\mathrm{AB} / / \mathrm{CD} . \angle \mathrm{BAE}=50^{\circ}$ and $\angle \mathrm{AEC}=20^{\circ}$ Find $\angle \mathrm{DCE}$

Q. 16 Find the coordinates of points A,B,C,D,E and F. Which of the points are the mirror images in (a) the x-axis (b) the y-axis

HOLIDAY HOME WORK ANSWERS :

(1) Area $=30 \mathrm{~cm}^{2}$
(2) H ------- On the x - axis ,J------- III quadrant ,K ------ I quadrant

L------- II quadrant, M-------- IV quadrant, N------On the y-axis
(3) Rhombus and Area $=16 \mathrm{~cm}^{2}$
(4) Degree $=3$
(5) i) -4
ii) $\frac{4}{3}$ iii) $\frac{-b}{a}$
(6) Quotient $=2 x^{2}+6 x-2 \quad$ Remainder $=-17$
(7) $M=3$
(8) $\mathrm{X}=125^{\circ}, \mathrm{y}=125^{\circ}$ and $\mathrm{z}=35^{0}$
(9) The coordinates of the vertex A are $(0,3 \sqrt{3})$
(10) $(y+x):(y-x)=21: 5$
(11) Proof
(12) Proof
(13) Proof
(14) Proof
(15) $\quad \angle \mathrm{DCE}=30^{\circ}$
(16) $\quad \mathrm{A}(2,2), \mathrm{B}(1,4), \mathrm{C}(5,5), \mathrm{D}(-1,4), \mathrm{E}(2,-2), \mathrm{F}(-5,-5)$
E is the mirror image of A in the x-axis
D is the mirror image of B in the y-axis

