INDIAN SCHOOL AL WADI AL KABIR
 Dept. of Mathematics HOLIDAY HOME WORK

Class XI(2016-17)

S.No

Questions
Section A(1 mark)

1. Simplify $\frac{1+3 i}{1-2 i}$
2. Find the argument of $\frac{1}{1-i}$

Answers
3. Find the general solution of $\cos \left(x+\frac{\pi}{4}\right)=0$.
4. Express $\frac{i^{2}+i^{4}+i^{6}+i^{7}}{1+i^{2}+i^{3}}$.
5. If the ordered pairs $(a,-1)$ and (5,b) belong to $\{(x, y): y=2 x-3\}$,

Find the values of a and b.

Section B(Long Answer)

6. Prove: $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}=\frac{1}{16}$
7. Prove that $\tan 70^{\circ}=\tan 20^{\circ}+2 \tan 50^{\circ}$
8. Prove that $\sin \alpha+\sin \left(\alpha+\frac{2 \pi}{3}\right)+\sin \left(\alpha+\frac{4 \pi}{3}\right)=0$.
9. Prove that $\cos ^{2} A+\cos ^{2}\left(A+240^{\circ}\right)+\cos ^{2}\left(A-240^{\circ}\right)=\frac{3}{2}$
10. Prove: $\frac{\operatorname{Cos} 8 A \operatorname{Cos} 5 A-\operatorname{Cos} 12 A \operatorname{Cos} 9 A}{\operatorname{Sin} 8 a \operatorname{Cos} 5 A+\operatorname{Cos} 12 A \operatorname{Sin} 9 A}=\tan 4 A$
11. In any $\triangle \mathrm{ABC}$, prove that:

$$
a \sin (B-C)+b \sin (C-A)+c \sin (A-B)=0
$$

12. Show that $2 \cos ^{6} \theta=64 \cos ^{6} \theta-96 \cos ^{4} \theta+36 \cos ^{2} \theta$
13. Find the domain and range of $f(x)=\sqrt{x-5}$
14. Prove that $a \cos A+b \cos B+c \cos C=2 a \sin B \sin C$.
15. Prove : $\frac{\sin 3 x+\sin 5 x+\sin 7 x+\sin 9 x}{\cos 3 x+\cos 5 x+\cos 7 x+\cos 9 x}=\tan 6 x$
16. Show that $\tan 3 x \tan 2 x \tan x=\tan 3 x-\tan 2 x-\tan x$.
17. Prove: $\frac{(\cos \theta-\cos 3 \theta)(\sin 8 \theta+\sin 2 \theta)}{(\sin 5 \theta-\sin \theta)(\cos 4 \theta-\cos 6 \theta)}=1$
18. If $(x)=\frac{1+x}{1-x}$, show that $\frac{f(x) f\left(x^{2}\right)}{1+[f(x)]^{2}}=\frac{1}{2}$.
19. Prove that :
$\cos \alpha+\cos \beta+\cos \gamma+\cos (\alpha+\beta+\gamma)=4 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\beta+\gamma}{2}\right) \cos \left(\frac{\gamma+\alpha}{2}\right)$
20. Is $g=\{(1,1),(2,3),(3,5),(4,7)\}$ a function? If this is described by the formula $g(x)=a x+b$
Then what should be the values assigned to a and b.
21. A college awarded 38 medals in football, 15 in basketball and 20 in cricket. If these medals went to a total of 58 men and only three men got medals in all the three sports.How many received medals in exactly two of the three sports.
22. Solve $2 \cos ^{2} x+3 \sin x=0$
23. In $\triangle A B C$, prove that $\sin \frac{B-C}{2}=\frac{b-c}{a} \cos \frac{A}{2}$
24. Prove that $\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right)=\frac{1}{8}$
25. Find the general solution of the following equation: $\sqrt{3} \cos x-\sin x=1$

$$
\begin{aligned}
& x=n \pi \pm \frac{\pi}{2}, \\
& n \pi \pm \frac{\pi}{4} n \in Z
\end{aligned}
$$

27. In any triangle $A B C$, prove that $a=b \cos C+c \cos B$
28. Solve the following trigonometric equation: $2 \sin ^{2} x+\sin ^{2} 2 x=2$

$$
\begin{gathered}
x=n \pi \pm \frac{\pi}{2}, \\
n \pi \pm \frac{\pi}{4}, n \in Z \\
2 \mathrm{n} \pi \pm \frac{\pi}{3}, n \in Z
\end{gathered}
$$

29. Find the general solution of the following equation: $3 \tan x+\cot x=5 \operatorname{cosec} x$
30. Evaluate $\left|\frac{1+i}{1-i}-\frac{1-i}{1+i}\right|$.
