INDIAN SCHOOL AL WADI AL KABIR

PO 513, PC 117, WADI KABIR, SULTANATE OF OMAN
Department of Mathematics
Class IX, Holiday Worksheet- June 2017
Submission Date: $7^{\text {th }}$ Aug 2017

Q.no	Questions	Ans
1.	Simplify ($4 \sqrt{ } 5-3 \sqrt{2}$) $(4 \sqrt{ } 5+3 \sqrt{ } 2)$	62
2.	Find any two irrational numbers between $\frac{1}{3}$ and $\frac{1}{2}$.	
3.	Represent $\sqrt{3}$ on the number line.	
4.	Express $1.3 \overline{2}+0 . \overline{35}$ in the form $\frac{p}{q^{\prime}}$, where p and q are integers and $\mathrm{q} \neq 0$.	$\frac{1659}{990}$
5.	Represent $\sqrt{4.5}$ geometrically on the number line.	
6.	Express $0.23 \overline{4}$ in the $\frac{p}{q}$ form, where p and q are integers and $\mathrm{q} \neq 0$.	$\frac{211}{900}$
7.	If $\frac{\sqrt{2}+\sqrt{3}}{3 \sqrt{2}-2 \sqrt{3}}=a+\sqrt{6} b$, find the value of a and b if a and b are any rational numbers.	$\begin{aligned} & a=2, \\ & b=\frac{5}{6} \end{aligned}$
8.	Simplify: $\frac{3 \sqrt{2}}{\sqrt{6}-\sqrt{3}}-\frac{4 \sqrt{3}}{\sqrt{6}-\sqrt{2}}+\frac{2 \sqrt{3}}{\sqrt{6}+2}$	0
9.	The quotient obtained when $\sqrt{1500}$ is divided by $2 \sqrt{15}$ is	5
10.	If $\mathrm{a}=8+3 \sqrt{7}$ and $\mathrm{b}=\frac{1}{a}$, what will be the value of $\mathrm{a}^{2}+\mathrm{b}^{2}$.	62
11.	Find the value of p if $5^{p-3} \times 3^{2 p-8}=225$.	5
12.	Simplify: $9^{\frac{3}{2}}-3 \times 5^{\circ}-\left(\frac{1}{81}\right)^{\frac{-1}{2}}$	15
13.	If the area of an equilateral triangle is $81 \sqrt{3} \mathrm{~cm}^{2}$, find its perimeter	54 cm
14.	Find the area of an isosceles triangle whose equal sides are of length 15 cm each and the third side is 12 cm .	$18 \sqrt{21} \mathrm{~cm}^{2}$

15.	The sides of a triangle are $120 \mathrm{~m}, 170 \mathrm{~m}$ and 250 m . Find its area and height of the triangle if base is 250 m .	$\begin{aligned} & 9000 m^{2} \\ & h=72 \mathrm{~m} \end{aligned}$
16.	The lengths of the sides of a right angled triangle are in the ratio $3: 4: 5$ and perimeter is 144 cm . Find its sides and area.	$864 \mathrm{~cm}^{2}$
17.	The perimeter of a rhombus is 52 cm . One of the diagonals is 24 cm , find the area of the rhombus.	$120 \mathrm{~cm}^{2}$
18.	Find the area of the shaded region in the figure:	$54 \mathrm{~cm}^{2}$
19.	Find the remainder when $2 x^{2}-\mathrm{x}+1$ is divided by $2 \mathrm{x}+1$.	2
20.	Factorise: $\frac{1}{8} a^{3}+\frac{1}{4} a^{2} b+\frac{1}{6} a b^{2}+\frac{1}{27} b^{3}$	$\left(\frac{a}{2}+\frac{b}{3}\right)^{3}$
21.	Factorise: $x^{3}-8 x^{2}+5 x+14$	$\begin{aligned} & (x+1) \\ & (x-2) \\ & (x-7) \\ & \hline \end{aligned}$
22.	If $(\mathrm{a}+\mathrm{b}+\mathrm{c})=15, \mathrm{ab}+\mathrm{bc}+\mathrm{ca}=35$, find $a^{2}+b^{2}+c^{2}$	155
23.	Find the value of k so that the polynomial $x^{3}-3 x^{2}-4 x+\mathrm{k}$ is divisible by ($\mathrm{x}+2$)	12
24.	Show that ($\mathrm{x}-1$) is a factor of the polynomial $\mathrm{p}(\mathrm{x})=2 x^{3}-3 x^{2}+7 x-6$.	
25.	If both ($\mathrm{x}-2$) and ($2 \mathrm{x}-1$) are factors of $\mathrm{p} \mathrm{x}^{2}+5 x+\mathrm{r}$, show that $\mathrm{p}=\mathrm{r}$	
26.	If the polynomials $\mathrm{p}(\mathrm{x})=x^{4}-2 x^{3}+3 x^{2}-9 x+3 \mathrm{a}-7$, when divided by $\mathrm{x}+1$ leaves the remainder 20 , then find the value of a.	$a=4$
27.	Polynomials $k x^{3}+3 x^{2}-3$ and $2 x^{3}-5 x+k$ when divided by $(x-4)$ leave the same remainder in each case. Find the value of k.	$\mathrm{k}=1$
28.	Without actually calculating the cubes, find the value of $8^{3}+(-15)^{3}+7^{3}$	-2520

