INDIAN SCHOOL AL WADI AL KABIR

Dept. Of Mathematics 2017-18, Class IX

HOLIDAY HOME WORK

1. Pints $A(4,2), B(-1,2)$ and $D(4,-5)$ are the three vertices of rectangle $A B C D$.Plot these points and hence find the vertex C .
2. A transversal intersects two parallel lines. Prove that the bisectors of any pair of corresponding angles so formed are parallel.
3. Prove that sum of the three angles of a triangle is 180°. Using the result, find the value of x and all the three angles of a triangle, if the angles are $(2 x-7)^{0},(x+25)^{0}$ and $(3 x+12)^{0}$.

Answers: $x=25$ and angles are $43^{\circ}, 50^{\circ}, 87^{\circ}$
4. $A B C D$ is a rhombus in which P, Q, R and S are the midpoints of sides $A B, B C, C D$ and $D A$ respectively. Prove that the quadrilateral PQRS is a rectangle.
5. The taxi fare in a city is as follows: For the first kilometre, the fare is ₹ 8 and for the subsequent distance is ₹ 5 per kilometre. Taking the distance covered as $x \mathrm{~km}$ and total fare as ₹ y , write a linear equation for the given information in two variables and draw its graph. (Ans. $5 x-y+3=0$)
6. Give the geometric representations of $x=-5$ as linear equation.
(i) In one variable
(ii) In two variables
7. The lengths of the two adjacent sides of parallelogram are 51 cm and 37 cm respectively. One of its diagonals is 20 cm .Find the area of the parallelogram. (Ans. : $612 \mathrm{sq} . \mathrm{cm}$)
8. $A D$ and $B E$ are respectively the altitudes of triangle $A B C$ with $A B=A C$. Prove that $A E=B D$.
9. Factorise the following completely.
(a) $x^{3}+9 x^{2}+23 x+15$
: Ans. $(x+1)(x+3)(x+5)$
(b) $2 x^{3}-5 x^{2}+x+2$
: Ans. $(x-1)^{2}(2 x+1)$
(c) $x^{3}-7 x+6$
: Ans. $(x-1)(x-2)(x+3)$
10. Express y in terms of x in the linear equation $4 x+5 y=20$.

For the same linear equation find the value of x when $y=-4$. (Ans. $y=\frac{20-4 x}{5}$ and $x=10$)
11.

In the above figure $A B C D$ is a parallelogram. $D N$ is perpendicular to $A B$ and $B M$ is perpendicular to $A D$. $C D=20 \mathrm{~cm}, A D=12 \mathrm{~cm}$ and $B M=15 \mathrm{~cm}$. Find the length of $D N$. (Ans. 9 cm).
12. Prove that two parallelograms lying on the same base and between same parallels are equal in areas.
13. Simplify: $\sqrt[4]{\left(\frac{132}{143}\right)^{-2}}$ (Ans. $\frac{\sqrt{13}}{2 \sqrt{3}}$)
14. Without actually calculating cubes and using suitable identity.

Evaluate: $14^{3}+13^{3}+(-27)^{3}$
(Ans.-14742)
15. Find the values of k if the polynomial $\mathrm{p}(\mathrm{x})=x^{4}-2 x^{3}+3 x^{2}-k x+3 k-7$ when divided by $(\mathrm{x}-1)$ leaves the remainder 19.Also find the remainder when $\mathrm{p}(\mathrm{x})$ is divided by ($x+2$).
16. Simplify: $\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}$
(Ans. k= 12 and remainder $=41$)
17. Represent $\sqrt{7.5}$ on the number line.
18. Find a and b, if $\frac{2 \sqrt{5}+\sqrt{3}}{2 \sqrt{5}-\sqrt{3}}+\frac{2 \sqrt{5}-\sqrt{3}}{2 \sqrt{5}+\sqrt{3}}=a+b \sqrt{15} \quad$ Ans. $a=46$ and $b=0$
19. Construct $\triangle \mathrm{ABC}$ in which $\mathrm{AB}+\mathrm{BC}+\mathrm{AC}=11.5 \mathrm{~cm}, \angle B=90^{\circ}$ and $\angle C=60^{\circ}$
20. In triangle $P Q R$, bisectors of exterior angles at Q and R meet at M. Then prove that

$$
\angle \mathrm{RMQ}=90^{\circ}-\frac{1}{2} \angle \mathrm{P}
$$

M

