	INDIAN SCHOOL AL WADI AL KABIR Class XI – MATHEMATICS Winter Holiday Work Sheet
1.	Prove that; $\frac{\sin A - \sin 3A + \sin 5A - \sin 7A}{\cos A - \cos 3A - \cos 5A + \cos 7A} = \cot 2A$
2.	In any $\triangle ABC$, prove $\frac{a^2 + b^2}{a^2 + c^2} = \frac{1 + \cos(A - B) \cdot \cos C}{1 + \cos(A - C) \cdot \cos B}$
3.	Find the image of the point $(3, 8)$ in the line $x + 3y = 7$
4.	Prove by using the principle of mathematical induction for all $n \in N$:
	$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$
	$1.2.3 2.3.4 3.4.5 \qquad \qquad n(n+1)(n+2) 4(n+1)(n+2)$
5.	Prove by using the principle of mathematical induction for all $n \in N$, that $x^{2n} - y^{2n}$ is divisible by $x + y$
6.	In a town of 10000 families, it was found that 40% families buy newspaper A, 20% families buy newspaper B and 10% families buy newspaper C. 5% families buy A and B, 3% families buy B and C and 4% families buy A and C. If 2% families buy all the three newspapers, find the number of families which buy (i) A only (ii) B only (iii) none of A, B or C
7.	Find the value of 'n' so that $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ may be Geometric Mean between 'a' and 'b'
8.	Find the sum of 'n' terms of the series : $0.5 + 0.55 + 0.555 + \dots n$ terms
9.	In the expansion of $\left(x^2 - \frac{1}{x}\right)^{12}$, find (i) 4 th term, (ii) term independent of x
10.	A committee of 8 students is to be selected from 8 boys and 6 girls. In how many ways this can be done if each group is to consists of al least 3 boys and 3 girls.
11.	Prove that $\cos^2 x + \cos^2 \left(x + \frac{\pi}{3}\right) + \cos^2 \left(x - \frac{\pi}{3}\right) = \frac{3}{2}$
12.	Let U = $\{1, 2, 3, 4, 5, 6, 7\}$, A = $\{2, 4, 6\}$, B = $\{3, 5\}$ and C = $\{1, 2, 4, 7\}$ Find, (i) (A U B) \cap C (ii) A \cap (B U C)' (iii) C - A (iv) (B - A) U (A - B)
13.	The relation R is defined as, $R = [(x, x + 5) : x \in \{0, 1, 2, 3, 4, 5\}]$ Write R in roster form and write its domain and range.

14. Find the value of $2\sin^2\left(\frac{3\pi}{4}\right) + 2\cos^2\left(\frac{3\pi}{4}\right) - 2\tan^2\left(\frac{3\pi}{4}\right)$ Solve the inequality $\frac{(2x-1)}{2} \ge \frac{(3x-2)}{4} - \frac{(2-x)}{5}$ 15. Find the angle between the lines $y = (2 - \sqrt{3})(x + 5)$ and $y = (2 + \sqrt{3})(x - 7)$ 16. Which number is larger : $(1.2)^{4000}$ or 800 17 For the post of 5 clerks, there are 25 applicants. 2 Posts are reserved for SC candidates and 18 remaining for others. There are 7 SC candidates among the applicants. In how many ways can the selection be done? Find 'n' if ${}^{2n-1}P_n$: ${}^{2n+1}P_{n-1} = 22:7$ 19 20 Write the complex number $\frac{1+7i}{(2-i)^2}$ in polar form Show that $2^{4n} - 15n - 1$ is divisible by 225. 21 If C1, C2, C3 and C4 are the coefficients of 2nd, 3rd, 4th and 5th terms respectively in the Binomial 22 expansion of $(1 + x)^n$, then prove that $\frac{C_1}{C_1 + C_2} + \frac{C_3}{C_3 + C_4} = \frac{2 C_2}{C_2 + C_2}$ How many words can be made by using all letters of the word 'MATHEMATICS' in which all 23 vowels are never together. Find the sum of the series $\frac{n-1}{n} + \frac{n-2}{n} + \frac{n-3}{n} + \dots$ to 'n' terms 24 Prove that the straight lines 2x + 5y - 1 = 0, 3x - 2y + 8 = 0 and 7x + 3y + 11 = 0 are concurrent. 25