INDIAN SCHOOL AL WADI AL KABIR
 Class XI - MATHEMATICS
 Winter Holiday Work Sheet

1. Prove that; $\frac{\sin A-\sin 3 A+\sin 5 A-\sin 7 A}{\cos A-\cos 3 A-\cos 5 A+\cos 7 A}=\cot 2 \mathrm{~A}$
2. In any $\triangle \mathrm{ABC}$, prove $\frac{a^{2}+b^{2}}{a^{2}+c^{2}}=\frac{1+\cos (A-B) \cdot \cos C}{1+\cos (A-C) \cdot \cos B}$
3. Find the image of the point $(3,8)$ in the line $x+3 y=7$
4. Prove by using the principle of mathematical induction for all $n \in N$:
$\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+$ \qquad $+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$
5. Prove by using the principle of mathematical induction for all $n \in N$, that $x^{2 n}-y^{2 n}$ is divisible by $x+y$
6. In a town of 10000 families, it was found that 40% families buy newspaper A, 20% families buy newspaper B and 10% families buy newspaper C. 5\% families buy A and B, 3\% families buy B and C and 4% families buy A and C. If 2% families buy all the three newspapers, find the number of families which buy
(i) A only
(ii) B only
(iii) none of A, B or C
7. Find the value of ' n ' so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be Geometric Mean between ' a ' and ' b '
8. Find the sum of ' n ' terms of the series : $0.5+0.55+0.555+$ \qquad n terms
9. In the expansion of $\left(x^{2}-\frac{1}{x}\right)^{12}$, find (i) $4^{\text {th }}$ term, (ii) term independent of x
10. A committee of 8 students is to be selected from 8 boys and 6 girls. In how many ways this can be done if each group is to consists of al least 3 boys and 3 girls.
11. Prove that $\cos ^{2} x+\cos ^{2}\left(x+\frac{\pi}{3}\right)+\cos ^{2}\left(x-\frac{\pi}{3}\right)=\frac{3}{2}$
12. Let $U=\{1,2,3,4,5,6,7\}, A=\{2,4,6\}, B=\{3,5\}$ and $C=\{1,2,4,7\}$ Find,
(i) $(\mathrm{A} U \mathrm{~B}) \cap \mathrm{C}$
(ii) $A \cap(B U C)$,
(iii) C - A
(iv) $(\mathrm{B}-\mathrm{A}) \mathrm{U}(\mathrm{A}-\mathrm{B})$
13. The relation R is defined as, $R=[(x, x+5): x \in\{0,1,2,3,4,5\}]$

Write R in roster form and write its domain and range.
14. Find the value of $2 \sin ^{2}\left(\frac{3 \pi}{4}\right)+2 \cos ^{2}\left(\frac{3 \pi}{4}\right)-2 \tan ^{2}\left(\frac{3 \pi}{4}\right)$
15. Solve the inequality $\frac{(2 x-1)}{3} \geq \frac{(3 x-2)}{4}-\frac{(2-x)}{5}$
16. Find the angle between the lines $y=(2-\sqrt{3})(x+5)$ and $y=(2+\sqrt{3})(x-7)$

17 Which number is larger : (1.2) ${ }^{4000}$ or 800

18 For the post of 5 clerks, there are 25 applicants. 2 Posts are reserved for SC candidates and remaining for others. There are 7 SC candidates among the applicants. In how many ways can the selection be done?

19 Find ' n ' if ${ }^{2 n-1} P_{n}:{ }^{2 n+1} P_{n-1}=22: 7$

20 Write the complex number $\frac{1+7 i}{(2-i)^{2}}$ in polar form
21 Show that $2^{4 n}-15 n-1$ is divisible by 225 .

22 If $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ and C 4 are the coefficients of $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$ terms respectively in the Binomial expansion of $(1+\mathrm{x})^{\mathrm{n}}$, then prove that $\frac{C_{1}}{C_{1}+C_{2}}+\frac{C_{3}}{C_{3}+C_{4}}=\frac{2 C_{2}}{C_{2}+C_{3}}$

23 How many words can be made by using all letters of the word 'MATHEMATICS' in which all vowels are never together.

24 Find the sum of the series $\frac{n-1}{n}+\frac{n-2}{n}+\frac{n-3}{n}+$ \qquad to ' n ' terms

25 Prove that the straight lines $2 x+5 y-1=0,3 x-2 y+8=0$ and $7 x+3 y+11=0$ are concurrent.

