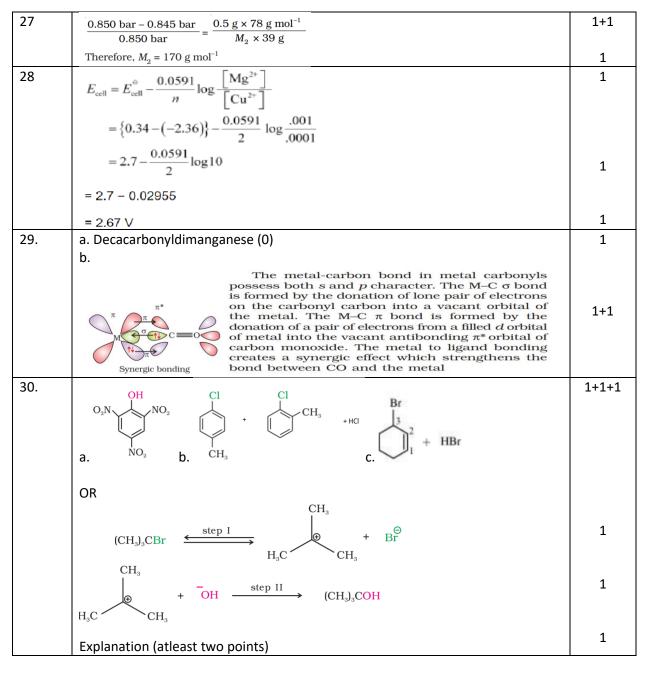


INDIAN SCHOOL AL WADI AL KABIR SAMPLE PAPER 1

CLASS XII

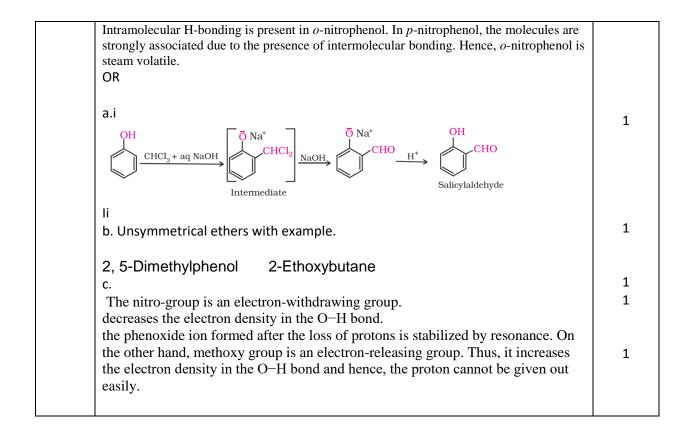
SUBJECT: CHEMISTRY (043) SET - I

MAX. MARKS: 70 TIME: 3 Hrs.


ANSWER KEY

CLASS 12 – CHEMISTRY – REHEARSAL 1 – 2020 - 21		
Q.NO.	ANSWER KEY – VALUE POINTS	
1 (i)	d	1
1 (ii)	b OR a	1
1(iii)	a	1
1(iv)	b	1
2(i)	a	1
2(ii)	b	1
2(iii)	С	1
2(iv)	a OR d	1
3	d OR c	1
4	d	1
5	a OR c	1
6	a	1
7	c OR b	1
8	b	1
9	С	1
10	a or b	1
11	c OR b	1
12	b	1
13	c	1
14	a	1
15	a	1
16	b OR c	1
17	$d = \frac{z M}{a^{3} N_{A}}$ $\Rightarrow a^{3} = \frac{z M}{d N_{A}}$ $= \frac{2 \times 93 \text{ gmol}^{-1}}{8.55 \text{ gcm}^{-3} \times 6.022 \times 10^{23} \text{mol}^{-1}}$ $= 3.612 \times 10^{-23} \text{ cm}^{3}$ So, $a = 3.306 \times 10^{-8} \text{ cm}$	1
	OR	

	From ΔABC, we have:	1
	$AC^2 = BC^2 + AB^2$, I
	$\Rightarrow b^2 = a^2 + a^2$ $b - Ar$	
	$\Rightarrow b^{2} = a^{2} + a^{2} \qquad b = 4r$ $\Rightarrow b^{2} = 2a^{2} \qquad \Rightarrow \sqrt{2}a = 4r$	
	$\Rightarrow b = \sqrt{2a}$ $\Rightarrow \sqrt{2a} = 4r$	
		1
	\therefore Packing efficiency = $\frac{\text{Volume occupied by four spheres in the unit cell}}{100\%} \times 100\%$	
	Total volume of the unit cell	
	= 74%	
18	(i) Tyndall effect	1
	(ii) Coagulation	1
19		1
	$\Lambda_{\rm m} = \frac{1000 \times \kappa}{M} = \frac{1000 \times 8 \times 10^{-5}}{2 \times 100^{-2}} = 40 \ {\rm S \ cm^2 \ mol^{-1}}$	1
	$A_{\rm M} = \frac{M}{M} = \frac{2 \times 10^{-3}}{2 \times 10^{-3}}$	
20	When chlorine reacts with water, it produces nascent oxygen.	
	$Cl_2 + H_2O \longrightarrow 2HCl + [O]$	
	Coloured substances + [O] \rightarrow Oxidized colourless substance	
	OR	
	$3Cu + 8HNO_{3(dilute)} \longrightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$	1
	$Cu + 4 HNO_{3(conc.)} \longrightarrow Cu (NO_3)_2 + 2 NO_2 + 2 H_2O$	1
21	a. [Co(NH ₃) ₆] ₂ (SO ₄) ₃	
	b. Tris(ethane-1, 2-diamine) cobalt(III) ion	
22	3d $4s$ $4p$ $4d$	
	Fc ³⁺ ion $\uparrow \uparrow \uparrow \uparrow \uparrow$	
	Fc ³⁺ ion in presence $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	1
	of $6F^{-}$ ions Six $sp^{3}d^{3}$ hybrid orbitals are formed	
	$[FeF_{b}]^{3} \qquad \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$	1


23	$\underbrace{NH_2}_{273-278 \text{ K}} \xrightarrow{NaNO_2 + HX} \underbrace{NaNO_2 + HX}_{\mathbf{N}_2 \mathbf{X}}$	1
	273-278 K Benzene diazonium halide	
	+ - N Y	
	$ \qquad \qquad$	
	Aryl halide X = Cl, Br	
		1
	$ \stackrel{\odot}{\to} H \xrightarrow{H} H H$	1
24	(i) n-hexane is formed.	1
	(ii) D- gluconic acid is produced.	1
	(chemical equations)	
	OR (1) Aldehydes give 2, 4-DNP test, Schiff's test, and react with NaHSO ₄ to form the	1
	hydrogen sulphite addition product. However, glucose does not undergo these	Ť
	reactions.(2) The pentaacetate of glucose does not react with hydroxylamine. This indicates	1
	that a free –CHO group is absent from glucose.	1
25	Step 1: Protonation	
	$CH_3CH_2CH_2 - \ddot{Q} - H^+ \longrightarrow CH_3CH_2CH_2 - \ddot{Q}^+ - H$ Popan - 1 - ol	1/2
	Step 2: Nucleophilic attack	
	$CH_3CH_2CH_2 - \ddot{O}_1 + CH_3 - CH_2 - CH_2 - CH_2 - \dot{O}_H + CH_3CH_2CH_2 - \ddot{O}_1 - CH_2CH_2CH_3$ H + H ₂ O	1
	Step 3: Deprotonation	
	$CH_3CH_2CH_2 \xrightarrow{+} O - CH_3CH_2CH_2 \xrightarrow{-} CH_3CH_2CH_2 - O - CH_2CH_2CH_3 + H^+$ $H = 1 - Propoxypropane$	1/2
26	a. Impurity Defects If molten NaCl containing a little amount of SrCl2 is	
	crystallised, some of the sites of Na+ ions are occupied by Sr2+ (Fig.1.27). Each	1
	Sr2+ replaces two Na+ ions. It occupies the site of one ion and the other site remains vacant. The cationic vacancies thus produced are equal in number to	
	that of Sr2+ ions.	
	b. (i) Frenkel Defect (ii) AgBr shows both, Frenkel as well as Schottky defects.	1
	c. Metal excess defect due to the presence of extra cations at interstitial sites:	
	On heating it loses oxygen and turns yellow.	1

$\begin{array}{c} ZnO & \xrightarrow{heating} & Zn^{2+} + \frac{1}{2}O_2 + 2e^-\\ Now there is excess of zinc in the crystal and Zn_{1+x}O. The excess Zn^{2+} ions move to interstitial to neighbouring interstitial sites. \end{array}$		1
OR		
2x + (294 - 3x) + (-200) = 0	Hence, fraction of nickel that exists as Ni ²⁺ = $\frac{94}{98}$	1
$\Rightarrow -x + 94 = 0$	= 0.959	
$\Rightarrow x = 94$	And, fraction of nickel that exists as $Ni^{3+} = \frac{4}{98}$	1
Therefore, number of Ni^{2+} ions = 94	= 0.041	

24			
31	a. $R \rightarrow P$		1.1
	$Rate = -\frac{d[R]}{dt} = k[R]$	$\ln [R]_0 = -k \times 0 + I$	1+1
		$\ln [R]_0 = I$	
	or $\frac{\mathbf{d}[\mathbf{R}]}{[\mathbf{R}]} = -k\mathbf{d}t$	0	
	Integrating this equation, we get	Substituting the value of I in equation $\ln[R] = -kt + \ln[R]_0$	
	$\ln [R] = -kt + I$	$\operatorname{III}[K] = -\kappa t + \operatorname{III}[K]_0$	
	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$		
	b.		
			1+1
			1+1
	Bill Slope = k/2.303		
	log (IR		
	C.		
	For the first order reaction.		1
	$k = \frac{2.303}{\ln \log \frac{ \mathbf{R} _{h}}{ \mathbf{R} }}$		
	at $t_{1/2}$ [R] = $\frac{[R]_2}{2}$ So, the above equation becomes		
	$k = \frac{2.303}{t_{1/2}} \log \frac{ \mathbf{R} _{2}}{ \mathbf{R} /2}$		
	or $t_{1/2} = \frac{2.303}{k} \log 2$ $t_{1/2} = \frac{2.303}{k} \times 0.301$		
	$t_{1/2} = \frac{0.693}{k}$		
	OR		
	$Rate = k [A]^{x} [B]^{y}$		
	According to the question,		1
			1
	$6.0 \times 10^{-3} = k [0.1]^{x} [0.1]^{y} $ (i) $7.2 \times 10^{-2} = k [0.3]^{x} [0.2]^{y} $ (ii)		
	$7.2 \times 10^{-2} = k [0.3]^{x} [0.2]^{y} $ (ii) $2.88 \times 10^{-1} = k [0.3]^{x} [0.4]^{y} $ (iii)		
	$2.40 \times 10^{-2} = k [0.4]^{x} [0.1]^{y} $ (iii) (iii)		
	$\Rightarrow x = 1$		2
	$\Rightarrow y = 2$		
	Therefore, the rate law is		
	Rate = k [A] [B] ² $k = \frac{6.0 \times 10^{-10}}{10^{-10}}$	$\frac{10^{-3} \text{ mol } L^{-1} \text{ min}^{-1}}{\text{ rol } L^{-1} \left(0.1 \text{ mol } L^{-1} \right)^2}$	
	$k = \frac{\text{Rate}}{1}$ (0.1 m	$L^{-1}(0.1 \text{ mol } L^{-1})^{-1}$	2
	$\Rightarrow k = \frac{\text{Rate}}{[\text{A}][\text{B}]^2} = 6.0 \text{ L}^2 \text{ m}$	ol ⁻² min ⁻¹	
32.	a.		1
	(i) The general trend towards less negative		1
	related to the general increase in the sum ionisation enthalpies.	or the first and second	1
	(ii) The high energy to transform Cu(s) to	$Cu^{2+}(aq)$ is not balanced by its	
L			I

(iii) The stability of the half-filled <i>d</i> sub-shell in Mn ^a and the completely filled <i>d</i> ^a configuration in Zn ^a are related to their more negative <i>E</i> ·V values b. (i)Due to large surface area and ability to show variable oxidation states (ii)Due to high value of third ionisation enthalpy OR a. +2 oxidation state is attained by the loss of the two 4 <i>s</i> electrons by these metals. Since the number of <i>d</i> electrons in (+2) state also increases from Ti(+2) to Mn(+2), the stability of +2 state increases (sa <i>d</i> -orbital is becoming more and more half-filled). Mn (+2) has <i>d</i> ^b electrons (that is half-filled <i>d</i> shell, which is highly stable). b. Cr ^a is strongly reducing in nature. It has a <i>d</i> ^c configuration. While acting as a reducing agent, it gets oxidized to Cr ^{a+} (electronic configuration, <i>d</i>). This <i>d</i> configuration can be written as $f_{2\pi}^{1}$ configuration, which is a more stable configuration. In the case of Mn ^{a+} (<i>d</i>), it acts as an oxidizing agent and gets reduced to Mn ^{a+} (<i>d</i>). This has an exactly half-filled <i>d</i> -orbital and is highly stable. $\therefore \mu - \sqrt{1(1+2)} - \sqrt{3} - 1.732 B.M$ a.i. $(\sum_{i} [Xe] 4f^i 5d^i 6s^2$ d. since fluorine and oxygen are the smaller in size and more detronegative elements. e. due to the high ionisation or high atomization energy and low hydration energy 2.11 3.3. a.i. $(\bigoplus_{i} \bigoplus_{i} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} COOH \otimes 2^{-1} \sum_{2.Hydroxybreact actd} B^{-1} \sum_{i} \bigoplus_{j} COH \otimes 2^{-1} \sum_{i} \bigoplus_{i} COH \otimes 2^{-1} \sum_{i} \bigoplus_{j} COH \otimes 2^{-1} \sum_{i} \bigoplus_{i} COH \otimes 2^{-1} \sum_{i} \bigoplus_{j} COH$		hydration enthalpy.	
values b. (i)Due to large surface area and ability to show variable oxidation states (ii)Due to high value of third ionisation enthalpy OR a. +2 oxidation state is attained by the loss of the two 4s electrons by these metals. Since the number of <i>d</i> electrons in (+2) state also increases from Ti(+2) to Mn(+2), the stability of +2 state increases (as <i>d</i> -orbital is becoming more and more half-filled). Mn (+2) has <i>d</i> ² electrons (that is half-filled <i>d</i> shell, which is highly stable). b. Cr ^a is strongly reducing in nature. It has a <i>d</i> configuration. While acting as a reducing agent, it gets oxidized to Cr ^a (electronic configuration, <i>d</i>). This <i>d</i> configuration can be written as $\frac{f_{2i}}{c}$ configuration, which is a more stable configuration. In the case of Mn ^a (<i>d</i>), it acts as an oxidizing agent and gets reduced to Mn ^a (<i>d</i>). This has an exactly half-filled <i>d</i> -orbital and is highly stable. $\therefore \mu = \sqrt{1(1+2)} = \sqrt{3} = 1.722 \text{ B.M}$ c. $[Xe] 4f^1 5d^1 6s^2$ d. since fluorine and oxygen are the smaller in size and more electronegative elements. e. due to the high ionisation or high atomization energy and low hydration energy associated with it 33. a.i. i. $R-X + R'-ij Na \longrightarrow R-ij - R' + Na X$ b. $CH_3 - CH_2 - CH_2 - OH + CH_3 - Br$ i. i. $C = CH_2 - CH_2 - OH + CH_3 - Br$		(iii) The stability of the half-filled d sub-shell in Mn ²⁺ and the completely	
(ii)Due to high value of third ionisation enthalpy OR a. +2 oxidation state is attained by the loss of the two 4s electrons by these metals. Since the number of d electrons in (+2) state also increases from Ti(+2) to Mn(+2), the stability of +2 state increases (as d-orbital is becoming more and more half-filled). Mn (+2) has d ⁵ electrons (that is half-filled d shell, which is highly stable). b. Cre- is strongly reducing in nature. It has a d ⁴ configuration. While acting as a reducing agent, it gets oxidized to Cre- (electronic configuration, d ⁵). This d ⁶ configuration can be written as t_{\pm}^{2} configuration, which is a more stable configuration. In the case of Mn ⁴⁺ (d ⁵), it acts as an oxidizing agent and gets reduced to Mn ⁴⁺ (d ⁷). This has an exactly half-filled d-orbital and is highly stable. $\therefore \mu = \sqrt{1(1+2)} = \sqrt{3} = 1.732 \text{ B.M}$ c. $[Xe] 4f^{4} 5d^{4} 6s^{2}$ d. since fluorine and oxygen are the smaller in size and more electronegative elements. e. due to the high ionisation or high atomization energy and low hydration energy associated with it 33. a.i. i. $R-X + R^{2}\ddot{Q} Na \longrightarrow R-\ddot{Q}-R' + Na X$ b. $CH_{3} - CH_{2} - CH_{2} - OH + CH_{3} - Br$ i. $CH_{3} - CH_{2} - CH_{2} - OH + CH_{3} - Br$ i. $C = CH_{3} - CH_{2} - CH_{2} - OH + CH_{3} - Br$		•	
OR a. +2 oxidation state is attained by the loss of the two 4s electrons by these metals. Since the number of <i>d</i> electrons in (+2) state also increases from Ti(+2) to Mn(+2), the stability of +2 state increases (as <i>d</i> -orbital is becoming more and more half-filled). Mn (+2) has <i>d</i> ⁵ electrons (that is half-filled <i>d</i> shell, which is highly stable). b. Cr ² is strongly reducing in nature. It has a <i>d</i> ⁴ configuration. While acting as a reducing agent, it gets oxidized to Cr ²⁺ (electronic configuration, <i>d</i>). This <i>d</i> ⁴ configuration can be written as t_{e}^{1} configuration, which is a more stable configuration. In the case of Mn ²⁺ (<i>d</i>), it acts as an oxidizing agent and gets reduced to Mn ²⁺ (<i>d</i>). This has an exactly half-filled <i>d</i> -orbital and is highly stable. $\therefore \mu = \sqrt{1(1+2)} = \sqrt{3} = 1.732 \text{ B.M}$ c. $[Xe] 4f^{1} 5d^{1} 6s^{2}$ d. since fluorine and oxygen are the smaller in size and more electronegative elements. e. due to the high ionisation or high atomization energy and low hydration energy associated with it 33. a.i. $f_{i} = \frac{ON}{UI} + \frac{ON}{UI} = \frac{OF}{UI} + \frac{OF}{OOOH} = \frac{OF}{UI} + \frac{OF}{ViroyOPenzole actid}$ ii. $R-X + R^{2} \frac{O}{2} Na \longrightarrow R - \frac{O}{2} - R^{2} + Na X$ b. $CH_{3} - CH_{2} - CH_{2} - OH + CH_{3} - Br$ $O = \frac{OF}{U} + \frac{OF}{UI} + \frac{OF}{UI} = \frac{OF}{UI} + \frac{OF}{ViroyOP} + \frac{OF}{UI} + \frac{OF}{ViroyOP} + \frac{OF}{UI} + \frac{OF}{ViroyOP} + \frac{OF}{UI} + \frac{OF}{ViroyOP} + \frac{OF}{UI} + \frac{OF}$			1
$\begin{array}{c c} \mbox{metals. Since the number of d electrons in (+2) state also increases from $Ti(+2)$ to Mn(+2), the stability of +2 state increases (as d-orbital is becoming more and more half-filled). Mn (+2) has d^{5} electrons (that is half-filled d shell, which is highly stable). 1 \\ \hline b. Cr^{p_1} is strongly reducing in nature. It has a d^{1} configuration. While acting as a reducing agent, it gets oxidized to Cr^{p_1} (electronic configuration, d^{1}). This d^{2} configuration can be written as $\frac{t_{2\pi}^{1}}{c_{2\pi}}$ configuration, which is a more stable configuration. In the case of $Mn^{p_1}(d)$, it acts as an oxidizing agent and gets reduced to $Mn^{p_1}(d)$, it acts as an oxidizing agent and gets reduced to $Mn^{p_1}(d)$, that is an exactly half-filled d-orbital and is highly stable. \therefore \mu = \sqrt{1(T+2)} = \sqrt{3} = 1.732 \text{ B.M} \begin{array}{c} I \\ c. [Xe] 4f^1 5d^1 6s^2 \\ d. since fluorine and oxygen are the smaller in size and more electronegative elements. \\ e. due to the high ionisation or high atomization energy and low hydration energy associated with it \\ \hline 0 \\ find \\ \hline 0 \\ $			1
acting as a reducing agent, it gets oxidized to Cr^{s+} (electronic configuration, d ^b). This d ^b configuration can be written as $r^{1/2}_{eff}$ configuration, which is a more stable configuration. In the case of Mn ^{s+} (d ^b), it acts as an oxidizing agent and gets reduced to Mn ²⁺ (d ^b). This has an exactly half-filled d-orbital and is highly stable. $\therefore \mu = \sqrt{\Gamma(1+2)} = \sqrt{3} = 1.732 \text{ B.M}$ c. $[Xe] 4f^{1} 5d^{1} 6s^{2}$ d. since fluorine and oxygen are the smaller in size and more electronegative elements. e. due to the high ionisation or high atomization energy and low hydration energy associated with it 33. a.i. $OH = \bigcup_{u=1}^{N} \bigcup_{u=1}^{O} \bigoplus_{u=1}^{O} \bigoplus_{u=1}^{O} \bigoplus_{u=1}^{O} \bigcup_{u=1}^{O} (OH \oplus U) \bigoplus_{u=1}^{O} (BH \oplus U)$		metals. Since the number of d electrons in (+2) state also increases from Ti(+2) to Mn(+2), the stability of +2 state increases (as d -orbital is becoming more and more half-filled). Mn (+2) has d^5 electrons (that is	1
of Mn ³⁺ (<i>d</i> ⁴), it acts as an oxidizing agent and gets reduced to Mn ²⁺ (<i>d</i> ⁴). This has an exactly half-filled <i>d</i> -orbital and is highly stable. $\therefore \mu = \sqrt{T(T+2)} = \sqrt{3} = 1.732 \text{ B.M}$ c. [Xe] 4f ¹ 5d ¹ 6s ² d. since fluorine and oxygen are the smaller in size and more electronegative elements. e. due to the high ionisation or high atomization energy and low hydration energy associated with it 33. a.i. OH $\bigcup \bigoplus MaOH \bigoplus \bigoplus (I) CO \\ (II) H2 \\ U = COH \\ (II) H2 \\ (II) H2 \\ (II) H2 \\ (II) H2 \\ (II$		acting as a reducing agent, it gets oxidized to Cr3+ (electronic	
c.1d. since fluorine and oxygen are the smaller in size and more electronegative elements. e. due to the high ionisation or high atomization energy and low hydration energy associated with it133.a.i.1 $(I) \rightarrow I \rightarrow$		of Mn^{3+} (d^4), it acts as an oxidizing agent and gets reduced to Mn^{2+} (d^4). This has an exactly half-filled <i>d</i> -orbital and is highly stable.	1
d. since fluorine and oxygen are the smaller in size and more electronegative elements. e. due to the high ionisation or high atomization energy and low hydration energy associated with it133.a.i.1		[Xe] 4f ¹ 5d ¹ 6s ²	
electronegative elements. e. due to the high ionisation or high atomization energy and low hydration energy associated with it 1 33. a.i. $\begin{array}{c} OH \\ \hline \\ OH \\ \hline \\ OH \\ \hline \\ OH \\ OH \\ CH_3 - CH_2 - CH_2 - OH + CH_3 - Br \\ \hline \\ C. \end{array}$ 1 1 1 1 1 1 1 1 1			1
i. R-X + R'- \dot{O} Na \rightarrow R- \dot{O} -R' + Na X b. CH ₃ - CH ₂ - CH ₂ - OH + CH ₃ - Br c.			1
33. a.i. $ \begin{array}{c} $			
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	33	ai	1
ii. $R-X + R' - \overset{\circ}{Q} Na \longrightarrow R - \overset{\circ}{Q} - R' + Na X$ b. $CH_3 - CH_2 - CH_2 - OH + CH_3 - Br$ 1 $(\overset{\circ}{D})^{OH} + C_{2H_3Br}$ 1 c.		$\bigcup_{i \in I} \xrightarrow{\text{NaOH}} \bigcup_{i \in I} \xrightarrow{\text{OH}} \underbrace{(i) \text{ CO}_2}_{(ii) \text{ H}^+} \underbrace{(i) \text{ COOH}}_{2-\text{Hydroxybenzoic acid}}$	1
$R-X + R' - \overset{\circ}{O} Na \longrightarrow R - \overset{\circ}{O} - R' + Na X$ b. $CH_3 - CH_2 - CH_2 - OH + CH_3 - Br$ 1 $(\overset{\circ}{OH} + C_{2H_3Br})$ 1 c.			1
$CH_{3} - CH_{2} - CH_{2} - OH + CH_{3} - Br$ 1 $CH_{3} - CH_{2} - CH_{2} - OH + CH_{3} - Br$ 1 $CH_{3} - CH_{2} - CH_{2} - OH + CH_{3} - Br$		R-X + R'-O Na → $R-O-R' + Na X$	
1		b.	
$+ C_2H_3Br$		$\mathrm{CH}_3 - \mathrm{CH}_2 - \mathrm{CH}_2 - \mathrm{OH} + \mathrm{CH}_3 - \mathrm{Br}$	1
		OH + C_2H_5Br	1
		C.	1

Prepared by : The Department of Science 2020 -21
Checked by : HOD – SCIENCE