INDIAN SCHOOL AL WADI AL KABIR

SAMPLE PAPER 3

CLASS XII

MAX. MARKS: 70 TIME: 3 Hrs.

SUBJECT: CHEMISTRY (043)

ANSWER KEY

O No	Answer key – Value points	Marks
Q.110	SECTION A	
1	i. option $a - of$ the increase in the nuclear charge by unity.	4
1	ii. option $b - same$	
	OR	
	option c – these elements belong to 4d and 5d series.	
	iii. option a – same ionic radii and same physical and chemical properties	
	iv. option $a - s > p > d > f$	
2	i. option c – Assertion is correct statement but reason is wrong statement.	4
2	ii. option d – Assertion is wrong statement but reason is correct statement.	
	OR	
	option a – Assertion and reason both are correct statements and reason is correct	
	explanation for assertion.	
	iii. option c: Assertion is correct statement but reason is wrong statement.	
	iv. option b: Assertion and reason both are correct statements but reason is not correct	
	explanation for assertion.	
3	a. Fe/HCl	1
4	a. Glycine	1
	OR	
	c. hydrogen bonds	1
5.	d. Aerosol	1
6	c. Swarts reaction	1
	OR	
	a. RI >RBr>RCl>RF	1
7.	d. Inductive effect, solvation effect and steric effect.	1
	OR	
	c. N-Phenylethanamide	1
8.	c. Both Absorption and Adsorption take place	1
	OR	
	b. negative	1
9	a. at a fixed pressure, there is a decrease in physical adsorption with increase in temperature.	1

10	d. Covalent solids	1
11	c. 4 isomers	1
12	a) Assertion and reason both are correct statements and reason is correct explanation	1
	for assertion.	
13	b) Assertion and reason both are correct statements but reason is not correct	1
	explanation for assertion.	
	OR	
	a) Assertion and reason both are correct statements and reason is correct explanation	1
	for assertion	
1/	a) Assortion is correct statement but reason is wrong statement	1
14	c) Assertion is correct statement out reason is wrong statement.	1
15	d) Assertion is wrong statement but reason is correct statement.	1
16	a) Assertion and reason both are correct statements and reason is correct explanation	1
10	for assertion	1
	SECTION B	
17		2
	$\begin{array}{c c} KMnO_4 - KOH \\ \hline H_3O^+ \\ \hline \end{array}$	
	Acetophenone Benzoic acid	
	CHO on an	
	$\sum Zn / Hg - HCl $	
	Cyclobexane(clemmensen	2
	carbaldehyde reduction)	
	Methylcyclohexane	
18	$\Delta T = \frac{K_f \times w_2 \times 1000}{K_f \times w_2 \times 1000}$	1
	$M_f = M_2 \times w_1$	
	$\Delta T_{f} \times M_{2} \times w_{1}$	
	$\Rightarrow w_2 = \frac{1}{K_1 \times 1000}$	
	$=\frac{1.5 \times 176 \times 75}{1000}$	
	3.9×1000	1
	5.08 g	

19	Physisorption	Chemisorption	2
	1. In this type of adsorption, the adsorbate is attached to the surface of the adsorbent with weak van der Waal's forces of attraction.	In this type of adsorption, strong chemical bonds are formed between the adsorbate and the surface of the adsorbent.	
	2. No new compound is formed in the process.	New compounds are formed at the surface of the adsorbent.	
	(Any two differences) OR		2
	Surface area of the solid The greater the surface area of the adsorbent, the greater is the adsorption of a gas on the	e solid surface	
	Effect of temperature		
	Adsorption is an exothermic process. Thus, in accordance with Le-Chatelier's principle, th	e magnitude of adsorption decreases with an increase in temperature.	
20	$t = \frac{2.303}{k} \log \frac{\left[\mathrm{R}\right]_0}{\left[\mathrm{R}\right]}$		1
	$=\frac{2.303}{1.15\times10^{-3}}\log\frac{5}{3}$		
	$=\frac{2.303}{1.15\times10^{-3}}\times0.2219$		1
21	order of reaction = $\frac{3}{2}$		1
	$= L^{\frac{1}{2}} \operatorname{mol}^{-\frac{1}{2}} \mathrm{s}^{-1}$		Ĩ
22	$CH_{3} - CH = CH_{2} \xrightarrow{H_{2}O/H^{+}} CH_{3} - CH_{3}$	— CH ₂	2
	OH	[
	(i) NaBH_4 CH ₂ -CH ₂ -C	1—СН-ОН	
	CH ₃ CH ₃ CH ₃ CH ₃	H ₃	
	(ii) 2 – Methylbutanal 2 – Methylbut	an – 1 – ol	
	(a)		2
	$ \overset{\text{OH}}{\longmapsto} + Zn \longrightarrow \bigoplus + ZnO $		2

	(b)	
	OH ONa OH	
	NaOH (I) CO ₃ COOH	
	(ii) H ⁺ 2-Hydroxybenzoic acid	
	(Salicylic acid)	
23.	VIII = 4 unpaired electrons	¹ / ₂
	Cr ³ = 3 unpaired electrons	¹ /2
	Cr^{3+} is more stable due to half filled t_{2g}^{3+} configuration	⁷ 2 + ⁷ 2
24.	a.	1
	CH ₂ -CH ₂ -CH ₂ -Br	
	b.	1
		1
	I NO ₂	
25.	Amorphous solids	1
25.	Amorphous solids Polyurethane, Teflon, Cwystelline solids	1
25.	Amorphous solids Polyurethane, Teflon, Crystalline solids potassium nitrate, copper	1
25.	Amorphous solids Polyurethane, Teflon, Crystalline solids potassium nitrate, copper	1
25.	Amorphous solids Polyurethane, Teflon, Crystalline solids potassium nitrate, copper SECTION C	1
25. 	Amorphous solids Polyurethane, Teflon, Crystalline solids potassium nitrate, copper SECTION C a. Due to highest electronegativity or absence of vacant d orbital or shows only one oxidation	1 1 1
25. 26	Amorphous solids Polyurethane, Teflon, Crystalline solids potassium nitrate, copper	1 1 1
25. 26	Amorphous solids Polyurethane, Teflon, Crystalline solids potassium nitrate, copper SECTION C a. Due to highest electronegativity or absence of vacant d orbital or shows only one oxidation state or does not show positive oxidation state b. Due to lower bond dissociation enthalpy of Te-H than O-H	1 1 1 1 1
25. 	Amorphous solids Polyurethane, Teflon, Crystalline solids potassium nitrate, copper	1 1 1 1 1
25. 26	Amorphous solids Polyurethane, Teflon, Crystalline solids potassium nitrate, copper SECTION C a. Due to highest electronegativity or absence of vacant d orbital or shows only one oxidation state or does not show positive oxidation state b. Due to lower bond dissociation enthalpy of Te-H than O-H c. Due to 8 valence electrons of Xe atom or draw and explain or due to electronic repulsion with the Xe-F bond.	1 1 1 1 1 1
25. 26	Amorphous solids Polyurethane, Teflon, Crystalline solids potassium nitrate, copper SECTION C a. Due to highest electronegativity or absence of vacant d orbital or shows only one oxidation state or does not show positive oxidation state b. Due to lower bond dissociation enthalpy of Te-H than O-H c. Due to 8 valence electrons of Xe atom or draw and explain or due to electronic repulsion with the Xe-F bond. OR The general electronic configuration of halogen is ns2np5.	1 1 1 1 1 1
25.	Amorphous solids Polyurethane, Teflon, Crystalline solids potassium nitrate, copper	1 1 1 1 1 1 ½ x 6 = 3
25. 26	Amorphous solids Polyurethane, Teflon, Crystalline solids potassium nitrate, copper SECTION C a. Due to highest electronegativity or absence of vacant d orbital or shows only one oxidation state or does not show positive oxidation state b. Due to lower bond dissociation enthalpy of Te-H than O-H c. Due to 8 valence electrons of Xe atom or draw and explain or due to electronic repulsion with the Xe-F bond. OR The general electronic configuration of halogen is ns2np5. These elements need one electron to complete their octet state. Fluorine molecule has the highest oxidising behaviour due to -1 oxidation state only.	1 1 1 1 1 ½ x 6 = 3
25. 26	Amorphous solids Polyurethane, Teflon, Crystalline solids potassium nitrate, copper	1 1 1 1 1 ½ x 6 = 3
25.	Amorphous solids Polyurethane, Teflon, Crystalline solids potassium nitrate, copper	1 1 1 1 1 1 ½ x 6 = 3

		1/2 + 1/2
	$\overline{\circ}$ $\overline{\circ}$ $\overline{\circ}$ $\overline{\circ}$ c. When molten NaCl containing a little amount of SrCl ₂ is crystallised, some of	
	the sites of Na ⁺ ions are occupied by Sr ²⁺ leading to one cation vacancy.	
29	i. The amide formed between $-COOH$ group of one molecule of an amino acid and $-NH_2$ group of another molecule of the amino acid by the elimination of a water molecule is called a peptide linkage.	1
	ii. The primary structure of protein refers to the specific sequence in which various amino acids are present in it, i.e., the sequence of linkages between amino acids in a polypeptide chain. The sequence in which amino acids are arranged is different in each protein A shange in the sequence creates a different protein	1
	animo acids are arranged is different in each protein. A change in the sequence creates a different protein.	-
	iii. In a biological system, a protein is found to have a unique 3-dimensional structure and a unique biological activity. In such a situation, the protein is called native protein. However, when the native protein is subjected to physical changes such as change in temperature or chemical changes such as change in pH, its H-bonds are disturbed. This disturbance unfolds the globules and uncoils the helix. As a result,	
	the protein loses its biological activity. This loss of biological activity by the protein is called denaturation.	
	During denaturation, the secondary and the tertiary structures of the protein get destroyed, but the primary	
	structure remains unaltered. One of the examples of denaturation of proteins is the coagulation of egg white when an egg is boiled.	1
30	(i) Acidified potassium permanganate	1
	(ii) 85% phosphoric acid & 440K	1
	(iii) NaBH ₄ or LiAlH ₄	1
31	a) I) II)	1+1
	↓ NO₂	1+1
	b) i) COOTK [*] ii) COCH ₃	
	c) Carboxylate ion is more stabilised than phenoxide ion / conjugate base of carboxylic acid is more stable than that of phenol / carboxylate ion has two equivalent resonating structures while the structures are non equivalent in phenoxide ion/ negative charge in carboxylate ion is delocalised over more electronegative two Oxygen atoms while in phenoxide ion negative charge is delocalised over one Oxygen atom and less electronegative Phenyl ring (or C-atoms). /Carboxylic acid reacts with NaHCO ₃ to give brisk effervescence of CO ₂ while phenol doesn't	1
	OR	

		½ x 3
	a) $CH_3COOCH_2CH_3 \xrightarrow{H_2SO_4 dil} CH_3COOH + CH_3CH_2OH$ A B C	
	$CH_3CH_2OH \longrightarrow CH_3COOH$	
	$CH_3CH_2OH \longrightarrow CH_2=CH_2$	
	A = Ethyl acetate (CH ₃ COOCH ₂ CH ₃) , B = Acetic or Ethanoic acid (CH ₃ COOH), C = Ethanol (CH ₃ CH ₂ OH)	½ x 3
	b) i) $CH_3CHO \longrightarrow CH_3CH_2OH$	1
	ii) CH ₃ CHO $\xrightarrow{\text{Zn/Hg in HCl}_{conc.}}$ CH ₃ CH ₃	1
	Or NH ₂ NH ₂ with	
32	a. In pentahalides, the oxidation state is +5 and in trihalides, the oxidation state is +3. Since the metal ion with a high charge has more polarizing power, pentahalides are more covalent than trihalides.	1
	b. As we move down a group, the atomic size increases and the stability of the hydrides of group 15 elements decreases. Since the stability of hydrides decreases on moving from NH ₃ to	1
	B1H ₃ , the reducing character of the hydrides increases on moving from NH ₃ to B1H ₃ . c. Extensive intermolecular hydrogen bonding in H ₂ O, which is absent in H ₂ S. Molecules of	1
	 H₂S are held together only by weak van der Waal's forces of attraction. d. forms only one oxoacid as compared to other halogens that form a number of oxoacids. Ionisation enthalpy, electronegativity, and electrode potential of fluorine are much higher 	1
	 than expected. e. It is difficult to study the chemistry of radon because it is a radioactive substance having a half-life of only 3.82 days. Also, compounds of radon such as RnF₂ have not been isolated. They have only been identified. 	1
	OR	
	$6\text{Li} + \text{N}_2 \xrightarrow{\text{Heat}} 2\text{Li}_3\text{N}$	1 x 5
	$NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$	
	$2F_{2}(g) + 2H_{2}O(1) \rightarrow 4H^{+}(aq) + 4F^{-}(aq) + O_{2}(g)$	
	$I_2 + Cl_2 \rightarrow 2ICl;$ (equimolar)	
	$XeF_6 + NaF \rightarrow Na^+ [XeF_7]^-$	
33	(i) a) At Anode: $2H_2O_{(1)} \longrightarrow 4H_{(aq)}^+ + 4e^- + O_2$ At Cathode: $Cu_{(aq)}^{2+} + 2e^- \longrightarrow Cu_{(s)}$. / Copper is deposited at cathode and Oxygen gas is liberated at anode.	1/2 + 1/2
	b) At Anode: $2H_2O_{(I)} \longrightarrow 4H_{(aq)}^+ + 4e^- + O_2$ At Cathode: $Ag_{(aq)}^+ + e^- \longrightarrow Ag_{(s)}$. / Silver is deposited at cathode and oxygen gas is liberated at anode.	½ + ½

(ii)	1
For hydrogen electrode, $H^+ + e^- \longrightarrow \frac{1}{2} H_2$, it is given that pH = 10	
∴[H ⁺] = 10 ⁻¹⁰ M	1
Now, using Nernst equation:	
$\mathbf{H}_{\left(\mathbf{H}^{+}/\frac{1}{2}\mathbf{H}_{2}\right)} = \frac{E_{\left(\mathbf{H}^{+}/\frac{1}{2}\mathbf{H}_{2}\right)}^{\Theta} - \frac{\mathbf{R}T}{n\mathbf{F}}\ln\frac{1}{\left[\mathbf{H}^{+}\right]}$	
$= E_{\left(\mathbf{H}^{+}/\frac{1}{2}\mathbf{H}_{2}\right)}^{\Theta} - \frac{0.0591}{1} \log \frac{1}{\left[\mathbf{H}^{+}\right]}$	1
$= 0 - \frac{0.0591}{1} \log \frac{1}{\left[10^{-10}\right]}$	
$= -0.0591 \log 10^{10}$	
= -0.591 V	
OR (i)	
Here, $n = 2$, $E_{cell}^{\odot} = 0.236$ V, T = 298 K	1
We know that:	
$\Delta_r \mathbf{G}^{\Theta} = -n \mathbf{F} \mathbf{E}_{\text{cell}}^{\Theta}$	1
= -2 × 96487 × 0.236	
= -45541.864 J mol ⁻¹	1
= -45.54 kJ mol ⁻¹	
Again, $\Delta_{P}G^{\Theta} = -2.303 \text{RT} \log K_{c}$	
$\Rightarrow \log K_{\rm c} = -\frac{\Delta_r G^{\odot}}{2.303 \text{ R}T}$	
$= -\frac{-45.54 \times 10^3}{2.303 \times 8.314 \times 298}$	
= 7.981	
$\therefore K_{\rm c} = \text{Antilog} (7.981)$	
$= 9.57 \times 10^7$	
(Please note : Log and antilog values will be provided in the Board Paper)	

Prepared by: The Department of Science 2020 -21	
Checked by: HOD – SCIENCE	