Strictly Confidential - (For Internal and Restricted Use Only)

Secondary School Examination - 2020 Marking Scheme- MATHEMATICS BASIC Subject Code : 241 Paper Code: 430/3/1,2,3

General Instructions:

1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best effortsin this process.
2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them. In class-X, while evaluating two competency based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, marks should be awarded.
3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
4. Evaluators will $\operatorname{mark}(\sqrt{ })$ wherever answer is correct. For wrong answer ' X 'be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
6. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
9. A full scale of marks $0-80$ has to be used. Please do not hesitate to award full marks if the answer deserves it.
10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on a reply.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
15. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
16. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

QUESTION PAPER CODE 430/3/1
 EXPECTED ANSWER/VALUE POINTS
 SECTION A

Question numbers 1 to 10 are multiple choice questions of 1 mark each.
Select the correct choice.

1. What is the largest number that divides 245 and 1029 , leaving remainder 5 in each?
(a) 15
(b) 16
(c) 9
(d) 5

Sol. (b) 16
2. Consider the following distribution:

Classes:	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$
Frequency:	10	15	12	20	9

The sum of lower limits of the median class and the modal class is
(a) 15
(b) 25
(c) 30
(d) 35

Sol. (b) 25
3. If the two tangents inclined at an angle of 60° are drawn to a circle of radius $\mathbf{3} \mathbf{~ c m}$, then the length of each tangent is:
(a) 3 cm
(b) $\frac{3 \sqrt{3}}{2} \mathrm{~cm}$
(c) $3 \sqrt{3} \mathrm{~cm}$
(d) 6 cm

Sol. (c) $3 \sqrt{3} \mathrm{~cm}$
4. The simplest form of $\frac{1095}{1168}$ is
(a) $\frac{17}{26}$
(b) $\frac{25}{26}$
(c) $\frac{13}{16}$
(d) $\frac{15}{16}$

Sol.
(d) $\frac{15}{16}$
5. One card is drawn at random from a well - shuffled deck of $\mathbf{5 2}$ cards. What is the probability of getting a Jack?
(a) $\frac{3}{26}$
(b) $\frac{1}{52}$
(c) $\frac{1}{13}$
(d) $\frac{3}{52}$

Sol. (c) $\frac{1}{13}$
6. If one zero of the quadratic polynomial, $(k-1) x^{2}+k x+1$ is -4 then the value of k is
(a) $-\frac{5}{4}$
(b) $\frac{5}{4}$
(c) $-\frac{4}{3}$
(d) $\frac{4}{3}$

Sol. (b) $\frac{5}{4}$
7. Which of the following rational numbers is expressible as a terminating decimal?
(a) $\frac{124}{165}$
(b) $\frac{131}{30}$
(c) $\frac{2027}{625}$
(d) $\frac{1625}{462}$

Sol. (c) $\frac{2027}{625}$
8. If α and β are the zeros of $\left(2 x^{2}+5 x-9\right)$, then the value of $\alpha \beta$ is
(a) $-\frac{5}{2}$
(b) $\frac{5}{2}$
(c) $-\frac{9}{2}$
(d) $\frac{9}{2}$

Sol. (c) $\frac{-9}{2}$
9. The perimeter of a triangle with vertices $(0,4),(0,0)$ and $(3,0)$ is
(a) $7+\sqrt{5}$
(b) 5
(c) 10
(d) 12

Sol. (d) 12
10. If $P(-1,1)$ is the midpoint of the line segment joining $A(-3, b)$ and $B(1, b+4)$, then b is equal to
(a) 1
(b) -1
(c) 2
(d) 0

Sol. (b) -1
In Question numbers 11 to 15, fill in the blanks:
11. Distance between $(a,-b)$ and (a, b) is \qquad .
Sol. $2 b$ units
12. The value of k for which system of equations $x+2 y=3$ and $5 x+k y=7$ has no solution is
\qquad .

Sol. $\mathrm{k}=10$
13. The value of $\left(\cos ^{2} 45^{\circ}+\cot ^{2} 45^{\circ}\right)$ is \qquad .

Sol. $\frac{3}{2}$
14. The value of $\left(\tan 27^{\circ}-\cot 63^{\circ}\right)$ is \qquad .
Sol. 0
15. If ratio of the corresponding sides of two similar triangles is $2: 3$, then ratio of their perimeters is \qquad .

Sol. 2:3
Answer the following questions, Question numbers 16 to 20.
16. If $\sec \theta=\frac{25}{7}$, then find the value of $\cot \theta$.

Sol. $\quad \tan \theta=\frac{24}{7} \Rightarrow \cot \theta=\frac{7}{24}$
OR
If $3 \tan \theta=4$, then find the value of $\left(\frac{3 \sin \theta+2 \cos \theta}{3 \sin \theta-2 \cos \theta}\right)$
Sol. Given expression $=\frac{3 \times \frac{4}{3}+2}{3 \times \frac{4}{3}-2}=3$
17. The perimeter of a sector of a circle of radius $14 \mathbf{~ c m}$ is $\mathbf{6 8} \mathbf{~ c m}$. Find the area of the sector.

Sol. $\quad l=68-28=40 \mathrm{~cm}$
$\mathrm{A}=280 \mathrm{~cm}^{2}$
OR
The circumference of a circle is $\mathbf{3 9 . 6} \mathbf{~ c m}$. Find its area.
Sol. $\quad \mathrm{r}=\frac{39.6}{2 \pi}$
$\mathrm{A}=\frac{392.04}{\pi}$ or $124.74 \mathrm{~cm}^{2} \quad \frac{1}{2}$
18. A letter of English alphabet is chosen at random. Determine the probability that chosen letter is a consonant.

Sol. No. of consonents $=21$
$\therefore \mathrm{P}=\frac{21}{26}$
19. In Fig. 1, D and E are points on sides $A B$ and $A C$ respectively of a $\triangle A B C$ such that $D E \| B C$. If $\mathrm{AD}=3.6 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}$ and $\mathrm{AE}=4.5 \mathrm{~cm}$, find EC and AC .

Fig. 1
Sol. $\mathrm{EC}=8 \mathrm{~cm}$
$\mathrm{AC}=12.5 \mathrm{~cm}$
20. If $3 y-1,3 y+5$ and $5 y+1$ are three consecutive terms of an A.P., then find the value of y.

Sol. $2(3 y+5)=3 y-1+5 y+1$
$y=5$

SECTION B

Question numbers 21 to 26 carry 2 marks each.
21. A bag contains 5 red, 8 white and 7 black balls. A ball is drawn at random from the bag. Find the probability that the drawn ball is
(i) red or white
(ii) not a white ball

Sol. Total no. of balls $=20$
(i) $\mathrm{P}($ ball is red or white $)=\frac{13}{20}$
(ii) $\mathrm{P}($ Not a white ball $)=\frac{12}{20}$ or $\frac{3}{5}$
22. Two dice are thrown at the same time. Find the probability of getting different numbers on the two dice.

Sol. Total number of outcomes $=36$
Favourable numbers of outcomes $=30$
Probability $=\frac{30}{36}$ or $\frac{5}{6}$
$\binom{$ Both numbers }{ are different }

OR

Two dice are thrown at the same time. Find the probability that the sum of the two numbers appearing on the top of the dice is more than 9.

Sol. Favourable outcomes $(5,5),(4,6),(6,4),(6,5),(5,6),(6,6)$

Total number of outcomes $=36$

Number of favourable outcomes $=6$

Required probability $=\frac{6}{36}$ or $\frac{1}{6}$
23. In Fig. 2, a circle is inscribed in a $\triangle A B C$, touching $B C, C A$ and $A B$ at P, Q and R respectively. If $A B=10 \mathrm{~cm}, A Q=7 \mathrm{~cm}$ and $C Q=5 \mathrm{~cm}$ then find the length of $B C$.

Fig. 2

Sol. $\quad \mathrm{AQ}=\mathrm{AR}=7 \mathrm{~cm}$

$$
\begin{aligned}
\mathrm{BR} & =\mathrm{AB}-\mathrm{AR}=10-7=3 \mathrm{~cm} \\
\mathrm{BC} & =\mathrm{BP}+\mathrm{PC} \\
& =\mathrm{BR}+\mathrm{CQ} \\
& =3+5=8 \mathrm{~cm}
\end{aligned}
$$

24. Prove that: $\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}=\tan \theta+\cot \theta$

Sol. LHS $=\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}=\sqrt{1+\tan ^{2} \theta+1+\cot ^{2} \theta}$

$$
\begin{aligned}
& =\sqrt{\tan ^{2} \theta+\cot ^{2} \theta+2} \\
& =\sqrt{\tan ^{2} \theta+\cot ^{2} \theta+2 \tan \theta \cot \theta}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{(\tan \theta+\cot \theta)^{2}} \\
& =\tan \theta+\cot \theta=\text { RHS }
\end{aligned}
$$

OR

Prove that: $\frac{\sin \theta}{1-\cos \theta}=(\operatorname{cosec} \theta+\cot \theta)$
Sol. LHS $=\frac{\sin \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}$

$$
=\frac{\sin \theta(1+\cos \theta)}{1-\cos ^{2} \theta}
$$

$$
=\frac{\sin \theta(1+\cos \theta)}{\sin ^{2} \theta}=\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}
$$

$$
=\operatorname{cosec} \theta+\cot \theta=\mathrm{RHS}
$$

25. Three cubes each of volume $216 \mathrm{~cm}^{3}$ are joined end to end to form a cuboid. Find the total surface area of resulting cuboid.

Sol. $\mathrm{a}^{3}=216 \mathrm{~cm}^{3}$
$\mathrm{a}=6 \mathrm{~cm}$
TSA of cuboid $=5 \mathrm{a}^{2}+4 \mathrm{a}^{2}+5 \mathrm{a}^{2}$

$$
\begin{array}{ll}
=14 \mathrm{a}^{2} & \frac{1}{2} \\
=504 \mathrm{~cm}^{2} & \frac{1}{2}
\end{array}
$$

26. Find the values of p for which the quadratic equation $x^{2}-2 p x+1=0$ has no real roots.

Sol. For no real roots

$$
\begin{array}{ll}
\mathrm{D}<0 & \\
(-2 \mathrm{p})^{2}-4 \times 1 \times 1<0 \\
\mathrm{p}^{2}-1<0 & 1 \\
-1<\mathrm{p}<1 & \frac{1}{2} \\
\hline
\end{array}
$$

SECTION C

Question numbers 27 to 34 carry 3 marks each.
27. If 1 and -2 are the zeroes of the polynomial $\left(x^{3}-4 x^{2}-7 x+10\right)$, find its third zero.

Sol. The two factors of polynomials are $(x-1),(x+2)$
$(x-1)(x+2)=x^{2}+x-2$
$\frac{x^{3}-4 x^{2}-7 x+10}{x^{2}+x-2}=(x-5) \quad 1 \frac{1}{2}$
Third zero $=5$
28. Draw a circle of radius 3 cm . From a point 7 cm away from its centre, construct a pair of tangents to the circle.

Sol. Drawing a circle of radius 3 cm , marking
Centre 0 and taking a point P such that
$\mathrm{OP}=7 \mathrm{~cm}$
Constructing two tangents
OR
Draw a line segment of $\mathbf{8 ~ c m}$ and divide it in the ratio 3:4.
Sol. Drawing a line segment of 8 cm
Dividing it in the ratio $3: 4$
29. A wire when bent in the form of an equilateral triangle encloses an area of $121 \sqrt{3} \mathbf{c m}^{2}$. If the same wire is bent into the form of a circle, what will be the radius of the circle?

Sol. Let ' a ' be the side of the equilateral triangle
$\Rightarrow \quad \frac{\sqrt{3}}{4} \mathrm{a}^{2}=121 \sqrt{3}$
$\Rightarrow \mathrm{a}=22 \mathrm{~cm}$
Perimeter of triangle $=3 \mathrm{a}=66 \mathrm{~cm}$
Hence, $2 \pi \mathrm{r}=66 \mathrm{~cm}$

$$
\mathrm{r}=\frac{33}{\pi} \mathrm{~cm} \text { or } \frac{21}{2} \mathrm{~cm}
$$

30. Prove that $\frac{\cos \theta}{(1-\tan \theta)}+\frac{\sin \theta}{(1-\cot \theta)}=(\cos \theta+\sin \theta)$

Sol. \quad LHS $=\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta}$

$$
\begin{aligned}
& =\frac{\cos ^{2} \theta}{\cos \theta-\sin \theta}+\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta} \\
& =\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos \theta-\sin \theta} \\
& =\cos \theta+\sin \theta=\text { RHS }
\end{aligned}
$$

OR

Prove that $(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta$.
Sol. $(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}$

$$
\begin{array}{lr}
=\sin ^{2} \theta+\operatorname{cosec}^{2} \theta+2+\cos ^{2} \theta+\sec ^{2} \theta+2 & \frac{1}{2}+\frac{1}{2} \\
=\sin ^{2} \theta+1+\cot ^{2} \theta+2+\cos ^{2} \theta+1+\tan ^{2} \theta+2 & \frac{1}{2}+\frac{1}{2} \\
=7+\tan ^{2} \theta+\cot ^{2} \theta & 1
\end{array}
$$

31. If $\sqrt{2}$ is given as an irrational number, then prove that $(7-2 \sqrt{2})$ is an irrational number.

Sol. Let $7-2 \sqrt{2}=m$, where m is a rational number

$$
\sqrt{2}=\frac{7-m}{2}
$$

Irrational = Rational
\Rightarrow LHS \neq RHS
It means out assumption is wrong.
Hence, $7-2 \sqrt{2}$ is irrational

OR

Find HCF of 44, 96 and 404 by prime factorization method. Hence find their LCM.
Sol. $\left.\quad \begin{array}{l}44=2^{2} \times 11 \\ 96=2^{5} \times 3 \\ 404=2^{2} \times 101\end{array}\right]$
$\mathrm{HCF}=2^{2}=4$
$\mathrm{LCM}=2^{5} \times 11 \times 3 \times 101$

$$
=106656
$$

32. Prove that the parallelogram circumscribing a circle is a rhombus.

Sol.

$$
\left.\begin{array}{l}
\mathrm{AP}=\mathrm{AS} \\
\mathrm{BP}=\mathrm{BQ} \\
\mathrm{CQ}=\mathrm{CR} \\
\mathrm{DR}=\mathrm{DS}
\end{array}\right] \text { Tangents from external point } \begin{aligned}
\mathrm{AB}+\mathrm{DC} & =\mathrm{AP}+\mathrm{PB}+\mathrm{DR}+\mathrm{RC} \\
& =\mathrm{AS}+\mathrm{BQ}+\mathrm{DS}+\mathrm{CQ} \\
& =\mathrm{AD}+\mathrm{BC}
\end{aligned}
$$

Since, ABCD is a llgm, $\mathrm{AB}=\mathrm{DC}, \mathrm{AD}=\mathrm{BC}$
$2 \mathrm{AB}=2 \mathrm{AD}$
$\mathrm{AB}=\mathrm{AD}$
$\Rightarrow \mathrm{ABCD}$ is a rhombus
33. In Fig. 3, arrangement of desks in a classroom is shown. Ashima, Bharti and Asha are seated at A, B and C respectively. Answer the following:
(i) Find whether the girls are sitting in a line.
(ii) If A, B and C are collinear, find the ratio in which point B divides the line segment joining A and C.

Fig. 3
Sol. Coordinates of $\mathrm{A}(3,1)$

$$
\begin{aligned}
& \mathrm{B}(6,4) \\
& \mathrm{C}(8,6)
\end{aligned}
$$

(i) Area of $(\triangle \mathrm{ABC})=\frac{1}{2}[3(4-6)+6(6-1)+8(1-4)]$

$$
=0
$$

Yes they are sitting in same line
(ii) Let $\mathrm{AB}: \mathrm{BC}=\mathrm{k}: 1$

$6=\frac{8 \mathrm{k}+3}{\mathrm{k}+1}$	$\frac{1}{2}$
k	$=\frac{3}{2}$ or Ratio $=3: 2$

34. A number consists of two digits whose sum is 10 . If 18 is subtracted from the number, its digit are reversed. Find the number.

Sol. Let two digit number $=10 \mathrm{x}+\mathrm{y}$

$$
\begin{align*}
& x+y=10 \tag{i}\\
& 10 x+y-18=10 y+x \\
\Rightarrow & x-y=2 \tag{ii}
\end{align*}
$$

SECTION D

Question Nos. 35 to 40 carry 4 marks each.
35. Some students planned a picnic. The total budget for food was ₹ 2,000 but $\mathbf{5}$ students failed to attend the picnic and thus the cost for food for each member increased by ₹ 20 . How many students attended the picnic and how much did each student pay for the food?

Sol. Let number of students be x
Cost of food for one student $=₹ \frac{2000}{x}$
$(x-5)\left(\frac{2000}{x}+20\right)=2000$
$x^{2}-5 x-500=0$
$(x-25)(x+20)=0$
$\mathrm{x}=25$

No. of students attended picnic $=20$
Cost of food they pay $=₹ 100$
36. The sum of first 6 terms of an A.P. is 42 . The ratio of its 10 th term to $30^{\text {th }}$ term is $\mathbf{1 : 3}$. Find the first and the 13th term of the A.P.

Sol. Here, $\frac{6}{2}(2 \mathrm{a}+5 \mathrm{~d})=42$

$$
\begin{equation*}
\Rightarrow 2 \mathrm{a}+5 \mathrm{~d}=14 \tag{i}
\end{equation*}
$$

Also,

$$
\begin{align*}
& \frac{a+9 d}{a+29 d}=\frac{1}{3} \tag{ii}\\
\Rightarrow & a=d
\end{align*}
$$

OR
Find the sum of all odd numbers between 100 and 300.
Sol. Odd number between 100 to 300 are

$$
\begin{aligned}
& 101,103 \ldots 299 \\
& 299=101+(\mathrm{n}-1) 2 \\
& \Rightarrow \mathrm{n}=100 \\
& \mathrm{~S}_{\mathrm{n}}=\frac{100}{2}(101+299) \\
& \quad=20,000
\end{aligned}
$$

37. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60°, and the angle of depression of its foot is 45°. Find the height of the tower. Given that $\sqrt{3}=1.732$.

Sol.

Correct figure

$$
\begin{align*}
& \tan 45^{\circ}=\frac{7}{x} \\
& \Rightarrow x=7 \mathrm{~m} \tag{i}\\
& \tan 60^{\circ}=\frac{h-7}{x} \\
& x \sqrt{3}=h-7 \tag{ii}
\end{align*}
$$

Solving (i) and (ii), $\mathrm{h}=7(\sqrt{3}+1)$

$$
\begin{aligned}
& =7 \times 2.732 \\
& =19.124 \mathrm{~m}
\end{aligned}
$$

38. In a right triangle, prove that the square of the hypotenuse is equal to sum of squares of the other two sides.

Sol. For correct given, to prove, construction and figure
For correct proof

OR

Prove that the tangents drawn from an external point to a circle are equal in length.

Sol. For correct given, to prove, construction and figure

$$
4 \times \frac{1}{2}=2
$$

For correct proof
39. A hemispherical depression is cut out from one face of a cubical wooden block of edge $21 \mathbf{c m}$, such that the diameter of the hemisphere is equal to edge of the cube. Determine the volume of the remaining block.

Sol. Let r be the radius of hemisphere $\therefore \mathrm{r}=\frac{21}{2} \mathrm{~cm}$
Volume of remaining block $=\mathrm{a}^{3}-\frac{2}{3} \pi \mathrm{r}^{3}$

$$
\begin{aligned}
& =(21)^{3}-\frac{2}{3} \pi \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2} \\
& =9261\left[1-\frac{\pi}{12}\right] \mathrm{cm}^{3} \\
& =6853 \mathrm{~cm}^{3} \text { (Approx.) }
\end{aligned}
$$

OR
A solid metallic cylinder of diameter 12 cm and height 15 cm is melted and recast into 12 toys in the shape of a right circular cone mounted on a hemisphere of same radius. Find the radius of the hemisphere and total height of the toy, if the height of the cone is $\mathbf{3}$ times the radius.

Sol. Here, $\mathrm{r}=6 \mathrm{~cm}$

$$
\begin{aligned}
& \pi(6)^{2} \times 15=12\left[\frac{1}{3} \pi \mathrm{r}^{2} \times 3 \mathrm{r}+\frac{2}{3} \pi \mathrm{r}^{3}\right] \\
& 36 \times 15=\frac{12}{3}\left[3 \mathrm{r}^{3}+2 \mathrm{r}^{3}\right] \\
& 9 \times 15=5 \mathrm{r}^{3} \\
& \mathrm{r}=3 \mathrm{~cm}
\end{aligned}
$$

Total height $=12 \mathrm{~cm}$
40. Find the mean of the following data:

Classes	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	5	10	18	30	20	12	5

Sol.

$\mathbf{C I}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{d}_{\mathbf{i}}$	$\mathbf{u}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{u}_{\mathbf{i}}$
$0-10$	5	5	-30	-3	-15
$10-20$	10	15	-20	-2	-20
$20-30$	18	25	-10	-1	-18
$30-40$	30	35	0	0	0
$40-50$	25	45	10	1	20
$50-60$	12	55	20	2	24
$60-70$	5	65	30	3	15
Total	100				6

$$
\begin{aligned}
\text { mean } & =\mathrm{A}+\frac{\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\Sigma \mathrm{f}_{\mathrm{i}}} \times \mathrm{h} \\
& =35+\frac{6}{100} \times 10 \\
& =\frac{356}{10} \text { or } 35.6
\end{aligned}
$$

QUESTION PAPER CODE 430/3/2
 EXPECTED ANSWER/VALUE POINTS
 SECTION A

Question numbers 1 to 10 are multiple choice questions of 1 mark each.
Select the correct choice.

1. The simplest form of $\frac{1095}{1168}$ is
(a) $\frac{17}{26}$
(b) $\frac{25}{26}$
(c) $\frac{13}{16}$
(d) $\frac{15}{16}$

Sol. (d) $\frac{15}{16}$
2. One card is drawn at random from a well - shuffled deck of 52 cards. What is the probability of getting a Jack?
(a) $\frac{3}{26}$
(b) $\frac{1}{52}$
(c) $\frac{1}{13}$
(d) $\frac{3}{52}$

Sol. (c) $\frac{1}{13}$
3. Which of the following rational numbers is expressible as a terminating decimal?
(a) $\frac{124}{165}$
(b) $\frac{131}{30}$
(c) $\frac{2027}{625}$
(d) $\frac{1625}{462}$

Sol. (c) $\frac{2027}{625}$
4. If one zero of the quadratic polynomial, $(k-1) x^{2}+k x+1$ is -4 then the value of k is
(a) $-\frac{5}{4}$
(b) $\frac{5}{4}$
(c) $-\frac{4}{3}$
(d) $\frac{4}{3}$

Sol. (b) $\frac{5}{4}$
5. If $\mathbf{P}(-1,1)$ is the midpoint of the line segment joining $A(-3, b)$ and $B(1, b+4)$, then b is equal to
(a) 1
(b) -1
(c) 2
(d) 0

Sol. (b) -1
6. Consider the following distribution:

Classes:	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$
Frequency:	10	15	12	20	9

The sum of lower limits of the median class and the modal class is
(a) 15
(b) 25
(c) 30
(d) 35

Sol. (b) 25
7. What is the largest number that divides 245 and 1029 , leaving remainder 5 in each?
(a) 15
(b) 16
(c) 9
(d) 5

Sol. (b) 16
8. The distance between the points $A(2,-3)$ and $B(2,2)$ is
(a) 2 units
(b) 3 units
(c) 4 units
(d) 5 units

Sol. (d) 5 units
9. The product of the two zeroes of the polynomial $3 x^{2}-7 x-27$ is:
(a) 27
(b) 9
(c) -9
(d) $\frac{7}{3}$

Sol. (c) -9
10. If the tangents $P A$ and $P B$ from an external point P to a circle with centre O are inclined to each other at an angle of 80°, then $\angle P O A$ equals:
(a) 50°
(b) 60°
(c) 70°
(d) 80°

Sol. (a) 50°
In Question numbers 11 to 15, fill in the blanks:
11. The value of k for which system of equations $x+2 y=3$ and $5 x+k y=7$ has no solution is
\qquad .

Sol. $\mathrm{k}=10$
12. The value of $\left(\tan 27^{\circ}-\cot 63^{\circ}\right)$ is \qquad .
Sol. 0
13. If ratio of the corresponding sides of two similar triangles is $2: 3$, then ratio of their perimeters is \qquad .

Sol. 2:3
14. Distance between $(a,-b)$ and (a, b) is \qquad .
Sol. 2 b units
15. The value of $\left(\sin 20^{\circ}-\cos 70^{\circ}\right)$ is \qquad .

Sol. 0
Answer the following questions, Question numbers 16 to 20.
16. The perimeter of a sector of a circle of radius 14 cm is $\mathbf{6 8} \mathbf{~ c m}$. Find the area of the sector.

Sol. $1=68-28=40 \mathrm{~cm}$
$\mathrm{A}=280 \mathrm{~cm}^{2}$
OR
The circumference of a circle is $\mathbf{3 9 . 6} \mathbf{~ c m}$. Find its area.
Sol. $r=\frac{39.6}{2 \pi}$
$\mathrm{A}=\frac{392.04}{\pi}$ or $124.74 \mathrm{~cm}^{2}$
17. If $3 y-1,3 y+5$ and $5 y+1$ are three consecutive terms of an A.P., then find the value of y.

Sol. $2(3 y+5)=3 y-1+5 y+1$
$y=5$
18. If $\sec \theta=\frac{25}{7}$, then find the value of $\cot \theta$.

Sol. $\tan \theta=\frac{24}{7} \Rightarrow \cot \theta=\frac{7}{24}$

OR

If $3 \tan \theta=4$, then find the value of $\left(\frac{3 \sin \theta+2 \cos \theta}{3 \sin \theta-2 \cos \theta}\right)$
Sol. Given expression $=\frac{3 \times \frac{4}{3}+2}{3 \times \frac{4}{3}-2}=3$

$$
\frac{1}{2}+\frac{1}{2}
$$

19. A bag contains 5 red, 4 blue and 3 green balls. A ball is drawn at random from the bag. Find the probability of getting a ball not of blue colour.

Sol. Total No. of balls $=12$
$\mathrm{P}($ Not a blue ball $)=\frac{8}{12}$ or $\frac{2}{3}$
20. In Fig. 1, $\mathrm{DE} \| \mathrm{BC}, \mathrm{AD}=2.4 \mathrm{~cm}, \mathrm{AE}=3.2 \mathrm{~cm}$ and $\mathrm{CE}=4.8 \mathrm{~cm}$. Find BD

Fig. 1
Sol. $\frac{2.4}{\mathrm{BD}}=\frac{3.2}{4.8}$
$\Rightarrow \quad \mathrm{BD}=3.6 \mathrm{~cm}$

SECTION B

Question numbers 21 to 26 carry 2 marks each.
21. Prove that: $\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}=\tan \theta+\cot \theta$

Sol. LHS $=\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}=\sqrt{1+\tan ^{2} \theta+1+\cot ^{2} \theta}$

$$
\begin{aligned}
& =\sqrt{\tan ^{2} \theta+\cot ^{2} \theta+2} \\
& =\sqrt{\tan ^{2} \theta+\cot ^{2} \theta+2 \tan \theta \cot \theta} \\
& =\sqrt{(\tan \theta+\cot \theta)^{2}} \\
& =\tan \theta+\cot \theta=\text { RHS }
\end{aligned}
$$

OR

Prove that: $\frac{\sin \theta}{1-\cos \theta}=(\operatorname{cosec} \theta+\cot \theta)$
Sol. LHS $=\frac{\sin \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}$

$$
\begin{aligned}
& =\frac{\sin \theta(1+\cos \theta)}{1-\cos ^{2} \theta} \\
& =\frac{\sin \theta(1+\cos \theta)}{\sin ^{2} \theta}=\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

$$
=\operatorname{cosec} \theta+\cot \theta=\mathrm{RHS}
$$

22. Find the values of p for which the quadratic equation $x^{2}-2 p x+1=0$ has no real roots.

Sol. For no real roots

$$
\begin{array}{ll}
\mathrm{D}<0 & \\
(-2 \mathrm{p})^{2}-4 \times 1 \times 1<0 & 1 \\
\mathrm{p}^{2}-1<0 & \frac{1}{2} \\
-1<\mathrm{p}<1 & \frac{1}{2}
\end{array}
$$

23. Two dice are thrown at the same time. Find the probability of getting different numbers on the two dice.

Sol. Total number of outcomes $=36$

Favourable numbers of outcomes $=30$
Probability $=\frac{30}{36}$ or $\frac{5}{6}$
(Both no. are dfiferent)

OR

Two dice are thrown at the same time. Find the probability that the sum of the two numbers appearing on the top of the dice is more than 9.
Sol. Favourable outcomes $(5,5),(4,6),(6,4),(6,5),(5,6),(6,6)$
Total number of outcomes $=36$

Number of favourable outcomes $=6$
Required probability $=\frac{6}{36}$ or $\frac{1}{6}$
24. A bag contains 5 red, 8 white and 7 black balls. A ball is drawn at random from the bag. Find the probability that the drawn ball is
(i) red or white
(ii) not a white ball

Sol. Total no. of balls $=20$
(i) $\mathrm{P}($ ball is red or white $)=\frac{13}{20}$
(ii) $\mathrm{P}($ Not a white ball $)=\frac{12}{20}$ or $\frac{3}{5}$
25. The length of a tangent from a point A at a distance of 5 cm from the centre of the circle is 4 cm . Find the diameter of the circle.

Sol.

$$
\begin{aligned}
\mathrm{OA} & =5 \mathrm{~cm} \\
\mathrm{AB} & =4 \mathrm{~cm} \\
\mathrm{OB}^{2} & =\mathrm{OA}^{2}-\mathrm{AB}^{2} \\
& =25-16 \\
& =9 \\
\mathrm{OB} & =3 \mathrm{~cm} \\
\text { diameter } & =6 \mathrm{~cm}
\end{aligned}
$$

26. Find the area of a circle whose circumference is 44 cm .

Sol. $2 \pi r=44$

$$
\mathrm{r}=7 \mathrm{~cm}
$$

Area of circle $=\frac{22}{7} \times 7 \times 7=154 \mathrm{~cm}^{2}$

SECTION C

Question numbers 27 to 34 carry 3 marks each.
27. In Fig. 3, arrangement of desks in a classroom is shown. Ashima, Bharti and Asha are seated at A, B and C respectively. Answer the following:
(i) Find whether the girls are sitting in a line.
(ii) If A, B and C are collinear, find the ratio in which point B divides the line segment joining A and C.

Fig. 3

Sol. Coordinates of $\mathrm{A}(3,1)$
B(6, 4)
$C(8,6)$
(i) Area of $(\triangle \mathrm{ABC})=\frac{1}{2}[3(4-6)+6(6-1)+8(1-4)]$

$$
=0
$$

Yes they are sitting in same line
(ii) Let $\mathrm{AB}: \mathrm{BC}=\mathrm{k}: 1$

$$
\begin{array}{ll}
6 & =\frac{8 \mathrm{k}+3}{\mathrm{k}+1} \\
\mathrm{k} & =\frac{3}{2} \text { or Ratio }=3: 2
\end{array}
$$

28. A number consists of two digits whose sum is 10 . If 18 is subtracted from the number, its digit are reversed. Find the number.

Sol. Let two digit number $=10 \mathrm{x}+\mathrm{y}$

$$
\begin{align*}
& x+y=10 \tag{i}\\
& 10 x+y-18=10 y+x \\
\Rightarrow & x-y=2 \tag{ii}
\end{align*}
$$

On solving (i) \& (ii) $x=6, y=4$
$\therefore \quad$ Required number $=64$
29. If $\sqrt{2}$ is given as an irrational number, then prove that $(7-2 \sqrt{2})$ is an irrational number.

Sol. Let $7-2 \sqrt{2}=m$, where m is a rational number

$$
\begin{equation*}
\sqrt{2}=\frac{7-m}{2} \tag{1}
\end{equation*}
$$

Irrational $=$ Rational
\Rightarrow LHS \neq RHS
It means out assumption is wrong.
Hence, $7-2 \sqrt{2}$ is irrational

OR

Find HCF of 44, 96 and 404 by prime factorization method. Hence find their LCM.
Sol.

$$
\left.\begin{array}{rl}
44 & =2^{2} \times 11 \\
96 & =2^{5} \times 3 \\
404 & =2^{2} \times 101
\end{array}\right] \quad 1 \frac{1}{2}
$$

30. If 1 and -2 are the zeroes of the polynomial $\left(x^{3}-4 x^{2}-7 x+10\right)$, find its third zero.

Sol. The two factors of polynomials are $(x-1),(x+2)$
$(x-1)(x+2)=x^{2}+x-2$

$$
\frac{x^{3}-4 x^{2}-7 x+10}{x^{2}+x-2}=(x-5)
$$

Third zero $=5$
31. Draw a circle of radius 3 cm . From a point 7 cm away from its centre, construct a pair of tangents to the circle.

Sol. Drawing a circle of radius 3 cm , marking
Centre 0 and taking a point P such that
$\mathrm{OP}=7 \mathrm{~cm}$
Constructing two tangents

OR

Draw a line segment of $\mathbf{8 ~ c m}$ and divide it in the ratio $3: 4$.
Sol. Drawing a line segment of 8 cm
Dividing it in the ratio $3: 4$
32. Prove that $\frac{\cos \theta}{(1-\tan \theta)}+\frac{\sin \theta}{(1-\cot \theta)}=(\cos \theta+\sin \theta)$

Sol. $\mathrm{LHS}=\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta}$

$$
\begin{aligned}
& =\frac{\cos ^{2} \theta}{\cos \theta-\sin \theta}+\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta} \\
& =\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos \theta-\sin \theta} \\
& =\cos \theta+\sin \theta=\text { RHS }
\end{aligned}
$$

OR

Prove that $(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta$.
Sol. $(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}$

$$
\begin{array}{lr}
=\sin ^{2} \theta+\operatorname{cosec}^{2} \theta+2+\cos ^{2} \theta+\sec ^{2} \theta+2 & \frac{1}{2}+\frac{1}{2} \\
=\sin ^{2} \theta+1+\cot ^{2} \theta+2+\cos ^{2} \theta+1+\tan ^{2} \theta+2 & \frac{1}{2}+\frac{1}{2} \\
=7+\tan ^{2} \theta+\cot ^{2} \theta & 1
\end{array}
$$

33. In Fig. 3, XP and $X Q$ are tangents from X to the circle with centre O. R is a point on the circle and $A B$ is tangent at R. Prove that:
$\mathbf{X A}+\mathbf{A R}=\mathbf{X B}+\mathbf{B R}$

Fig. 3
Sol. $\mathrm{XP}=\mathrm{XQ}$ (tangents from external points)
$\mathrm{XA}+\mathrm{AP}=\mathrm{XB}+\mathrm{BQ}$
$\mathrm{XA}+\mathrm{AR}=\mathrm{XB}+\mathrm{BR}(\mathrm{AP}=\mathrm{AR}, \mathrm{BQ}=\mathrm{BR})$
34. The radii of two circles are 8 cm and 6 cm . Find the radius of the circle having its area equal to the sum of the areas of the two circles.

Sol. Let r be the radius of required circle
Here, $\pi(8)^{2}+\pi(6)^{2}=\pi r^{2}$

$$
100=r^{2}
$$

$\mathrm{r}=10 \mathrm{~cm}$

SECTION D

Question Nos. 35 to 40 carry 4 marks each.
35. In a right triangle, prove that the square of the hypotenuse is equal to sum of squares of the other two sides.

Sol. For correct given, to prove, construction and figure
For correct proof
OR
Prove that the tangents drawn from an external point to a circle are equal in length.

Sol. For correct given, to prove, construction and figure
36. A hemispherical depression is cut out from one face of a cubical wooden block of edge $21 \mathbf{c m}$, such that the diameter of the hemisphere is equal to edge of the cube. Determine the volume of the remaining block.

Sol. Let r be the radius of hemisphere $\therefore \mathrm{r}=\frac{21}{2} \mathrm{~cm}$
Volume of remaining block $=\mathrm{a}^{3}-\frac{2}{3} \pi \mathrm{r}^{3}$

$$
\begin{aligned}
& =(21)^{3}-\frac{2}{3} \pi \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2} \\
& =9261\left[1-\frac{\pi}{12}\right] \mathrm{cm}^{3} \\
& =6853 \mathrm{~cm}^{3} \text { (Approx.) }
\end{aligned}
$$

OR
A solid metallic cylinder of diameter 12 cm and height 15 cm is melted and recast into 12 toys in the shape of a right circular cone mounted on a hemisphere of same radius. Find the radius of the hemisphere and total height of the toy, if the height of the cone is 3 times the radius.
Sol. Here, $r=6 \mathrm{~cm}$

$$
\begin{aligned}
& \pi(6)^{2} \times 15=12\left[\frac{1}{3} \pi \mathrm{r}^{2} \times 3 \mathrm{r}+\frac{2}{3} \pi \mathrm{r}^{3}\right] \\
& 36 \times 15=\frac{12}{3}\left[3 \mathrm{r}^{3}+2 \mathrm{r}^{3}\right] \\
& 9 \times 15=5 \mathrm{r}^{3} \\
& \mathrm{r}=3 \mathrm{~cm}
\end{aligned}
$$

Total height $=12 \mathrm{~cm}$
37. The sum of first 6 terms of an A.P. is 42 . The ratio of its 10 th term to $30^{\text {th }}$ term is $\mathbf{1 : 3}$. Find the first and the 13th term of the A.P.

Sol. Here, $\frac{6}{2}(2 \mathrm{a}+5 \mathrm{~d})=42$
$\Rightarrow 2 \mathrm{a}+5 \mathrm{~d}=14$
Also,

$$
\begin{align*}
& \frac{a+9 d}{a+29 d}=\frac{1}{3} \tag{ii}\\
\Rightarrow & a=d
\end{align*}
$$

Solving (i) and (ii), $7 \mathrm{a}=14$
$\Rightarrow \mathrm{a}=2$

$$
d=2
$$

$$
a_{13}=a+12 d=26
$$

OR

Find the sum of all odd numbers between 100 and 300.
Sol. Odd number between 100 to 300 are

$$
\begin{gathered}
101,103 \ldots 299 \\
299=101+(\mathrm{n}-1) 2 \\
\Rightarrow \quad \mathrm{n}=100 \\
\mathrm{~S}_{\mathrm{n}}=\frac{100}{2}(101+299) \\
\quad=20,000
\end{gathered}
$$

38. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60°, and the angle of depression of its foot is 45°. Find the height of the tower. Given that $\sqrt{3}=1.732$.

Sol.

Correct figure
1

$$
\begin{align*}
& \tan 45^{\circ}=\frac{7}{x} \\
& \Rightarrow x=7 m \tag{i}\\
& \tan 60^{\circ}=\frac{h-7}{x} \\
& x \sqrt{3}=h-7 \tag{ii}
\end{align*}
$$

Solving (i) and (ii) $\mathrm{h}=7(\sqrt{3}+1)$

$$
\begin{aligned}
& =7 \times 2.732 \\
& =19.124 \mathrm{~m}
\end{aligned}
$$

39. Find the mean of the following distribution:

Classes:	$100-150$	$150-200$	$200-250$	$250-300$	$300-350$
Frequency:	4	5	12	2	2

Sol.

$\mathbf{C I}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{d}_{\mathbf{i}}$	$\mathbf{u}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{u}_{\mathbf{i}}$
$100-150$	4	125	-100	-2	-8
$150-200$	5	175	-50	-1	-5
$200-250$	12	225	0	0	0
$250-300$	2	275	50	1	2
$300-350$	2	325	100	2	4
Total	25				-7

$$
\begin{aligned}
\text { Mean } & =\mathrm{A}+\frac{\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\Sigma \mathrm{f}_{\mathrm{i}}} \times \mathrm{h} \\
& =225+\frac{-7}{25} \times 50 \\
& =211
\end{aligned}
$$

40. The sum of the reciprocals of the ages of a child 3 years ago and 5 years hence from now is $\frac{1}{3}$. Find his present age.

Sol. Let the present age $=x$ years

$$
\begin{align*}
& \frac{1}{x-3}+\frac{1}{x+5}=\frac{1}{3} \tag{2}\\
\Rightarrow & x^{2}-4 x-21=0 \\
& (x-7)(x+3)=0
\end{align*}
$$

Hence, present age $=7$ years

QUESTION PAPER CODE 430/3/3
 EXPECTED ANSWER/VALUE POINTS
 SECTION A

Question numbers 1 to 10 are multiple choice questions of 1 mark each.
Select the correct choice.

1. The simplest form of $\frac{1095}{1168}$ is
(a) $\frac{17}{26}$
(b) $\frac{25}{26}$
(c) $\frac{13}{16}$
(d) $\frac{15}{16}$

Sol. (d) $\frac{15}{16}$
2. One card is drawn at random from a well - shuffled deck of 52 cards. What is the probability of getting a Jack?
(a) $\frac{3}{26}$
(b) $\frac{1}{52}$
(c) $\frac{1}{13}$
(d) $\frac{3}{52}$

Sol. (c) $\frac{1}{13}$
3. If one zero of the quadratic polynomial, $(k-1) x^{2}+k x+1$ is -4 then the value of k is
(a) $-\frac{5}{4}$
(b) $\frac{5}{4}$
(c) $-\frac{4}{3}$
(d) $\frac{4}{3}$

Sol. (b) $\frac{5}{4}$
4. If $P(-1,1)$ is the midpoint of the line segment joining $A(-3, b)$ and $B(1, b+4)$, then b is equal to
(a) 1
(b) $\mathbf{- 1}$
(c) 2
(d) 0

Sol. (b) -1
5. Which of the following rational numbers is expressible as a terminating decimal?
(a) $\frac{124}{165}$
(b) $\frac{131}{30}$
(c) $\frac{2027}{625}$
(d) $\frac{1625}{462}$

Sol. (c) $\frac{2027}{625}$
6. Consider the following distribution:

Classes:	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$
Frequency:	10	15	12	20	9

The sum of lower limits of the median class and the modal class is
(a) 15
(b) 25
(c) 30
(d) 35

Sol. (b) 25
7. What is the largest number that divides 245 and 1029 , leaving remainder 5 in each?
(a) 15
(b) 16
(c) 9
(d) 5

Sol. (b) 16
8. If $P A$ and $P B$ are tangents to a circle with centre O such that $\angle A P B=70^{\circ}$, then $\angle A O B$ is
(a) 140°
(b) 110°
(c) 35°
(d) 70°

Sol. (b) 110°
9. If α and β are the zeroes of the polynomial $3 x^{2}+4 x-3$, then value of $\alpha \beta$ is
(a) 1
(b) $\frac{4}{3}$
(c) $-\frac{4}{3}$
(d) -1

Sol. (d) -1
10. Distance of the point $(a \cos \theta, a \sin \theta)$ from origin is:
(a) a
(b) a^{2}
(c) $\pm a$
(d) 1

Sol. (a) a
In Question numbers 11 to 15, fill in the blanks:
11. The value of $\left(\tan 27^{\circ}-\cot 63^{\circ}\right)$ is \qquad .
Sol. 0
12. If ratio of the corresponding sides of two similar triangles is $2: 3$, then ratio of their perimeters is \qquad .
Sol. 2:3
13. The value of k for which system of equations $x+2 y=3$ and $5 x+k y=7$ has no solution is
\qquad ـ.

Sol. $\mathrm{k}=10$
14. Distance between $(a,-b)$ and (a, b) is \qquad .
Sol. $2 b$ units
15. The value of $\left(\sec ^{2} 20^{\circ}-\cot ^{2} 70^{\circ}\right)$ is \qquad .

Sol. 1
Answer the following questions, Question numbers 16 to 20.
16. The perimeter of a sector of a circle of radius 14 cm is $\mathbf{6 8} \mathbf{~ c m}$. Find the area of the sector.

Sol. $\quad l=68-28=40 \mathrm{~cm}$

$$
\mathrm{A}=280 \mathrm{~cm}^{2}
$$

OR

The circumference of a circle is 39.6 cm . Find its area.
Sol. $\quad r=\frac{39.6}{2 \pi}$
$\mathrm{A}=\frac{392.04}{\pi}$ or $124.74 \mathrm{~cm}^{2}$
17. If $\sec \theta=\frac{25}{7}$, then find the value of $\cot \theta$.

Sol. $\tan \theta=\frac{24}{7} \Rightarrow \cot \theta=\frac{7}{24}$

OR

If $3 \tan \theta=4$, then find the value of $\left(\frac{3 \sin \theta+2 \cos \theta}{3 \sin \theta-2 \cos \theta}\right)$
Sol. Given expression $=\frac{3 \times \frac{4}{3}+2}{3 \times \frac{4}{3}-2}=3$
18. If $3 y-1,3 y+5$ and $5 y+1$ are three consecutive terms of an A.P., then find the value of y.

Sol. $2(3 y+5)=3 y-1+5 y+1$
$y=5$
19. In Fig. 1, $\mathrm{DE} \| \mathrm{BC}, \mathrm{AD}=3 \mathrm{~cm}$ and $\mathrm{BD}=2 \mathrm{~cm}$;

Find $\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{ABC})}$

Fig. 1

Sol. $\mathrm{AB}=3+2=5 \mathrm{~cm}$

$$
\frac{\operatorname{ar}(\mathrm{ADE})}{\operatorname{ar}(\mathrm{ABC})}=\left(\frac{3}{5}\right)^{2}=\frac{9}{25}
$$

20. A bag contains $\mathbf{4}$ red, 5 white and 6 green balls. A ball is drawn at random from the bag. Find the probability of getting not a red ball.

Sol. Total No. of balls $=15$
$\mathrm{P}($ Not a red ball $)=\frac{11}{15}$

SECTION B

Question numbers 21 to 26 carry 2 marks each.
21. Prove that: $\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}=\tan \theta+\cot \theta$

Sol. LHS $=\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}=\sqrt{1+\tan ^{2} \theta+1+\cot ^{2} \theta}$

$$
\begin{aligned}
& =\sqrt{\tan ^{2} \theta+\cot ^{2} \theta+2} \\
& =\sqrt{\tan ^{2} \theta+\cot ^{2} \theta+2 \tan \theta \cot \theta} \\
& =\sqrt{(\tan \theta+\cot \theta)^{2}}
\end{aligned}
$$

$$
=\tan \theta+\cot \theta=\text { RHS }
$$

OR

Prove that: $\frac{\sin \theta}{1-\cos \theta}=(\operatorname{cosec} \theta+\cot \theta)$
Sol. LHS $=\frac{\sin \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}$
$=\frac{\sin \theta(1+\cos \theta)}{\sin ^{2} \theta}=\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}$

$$
=\operatorname{cosec} \theta+\cot \theta=\mathrm{RHS}
$$

22. A bag contains 5 red, 8 white and 7 black balls. A ball is drawn at random from the bag. Find the probability that the drawn ball is
(i) red or white
(ii) not a white ball

Sol. Total no. of balls $=20$
(i) $\mathrm{P}($ ball is red or white $)=\frac{13}{20}$
(ii) $\mathrm{P}($ Not a white ball $)=\frac{12}{20}$ or $\frac{3}{5}$
23. Find the values of p for which the quadratic equation $x^{2}-2 p x+1=0$ has no real roots.

Sol. For no real roots

$$
\begin{array}{ll}
\mathrm{D}<0 & \\
(-2 \mathrm{p})^{2}-4 \times 1 \times 1<0 & 1 \\
\mathrm{p}^{2}-1<0 & \frac{1}{2} \\
-1<\mathrm{p}<1 & \frac{1}{2}
\end{array}
$$

24. Two dice are thrown at the same time. Find the probability of getting different numbers on the two dice.

Sol. Total number of outcomes $=36$
Favourable numbers of outcomes $=30$
Probability $=\frac{30}{36}$ or $\frac{5}{6}$
$\binom{$ Both numbers }{ are different }

OR
Two dice are thrown at the same time. Find the probability that the sum of the two numbers appearing on the top of the dice is more than 9.

Sol. Favourable outcomes $(5,5),(4,6),(6,4),(6,5),(5,6),(6,6)$

Total number of outcomes $=36$

Number of favourable outcomes $=6$

Required probability $=\frac{6}{36}$ or $\frac{1}{6}$
25. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Sol.

Correct figure
$\angle \mathrm{OPA}=90^{\circ}\{$ radius is perpendicular to tan gent $\}$
$\angle \mathrm{OQD}=90^{\circ}$
But they are forming alternate interior angle

$$
\Rightarrow \mathrm{AB} \| \mathrm{CD}
$$

26. In Fig. 2, $O A C B$ is a quadrant of a circle with Centre O and radius 7 cm . If $O D=4 \mathrm{~cm}$, find the area of the shaded region.

Fig. 2
Sol. Area of shaded region $=\frac{1}{4} \pi(7)^{2}-\frac{1}{2} \times 7 \times 4$

$$
\begin{array}{ll}
=\left(\frac{49}{4} \pi-14\right) \mathrm{cm}^{2} & \frac{1}{2} \\
=24.5 \mathrm{~cm}^{2} & \frac{1}{2}
\end{array}
$$

SECTION C

Question numbers 27 to 34 carry 3 marks each.
27. A number consists of two digits whose sum is 10 . If 18 is subtracted from the number, its digit are reversed. Find the number.

Sol. Let two digit number $=10 \mathrm{x}+\mathrm{y}$

$$
\begin{align*}
& x+y=10 \tag{i}\\
& 10 x+y-18=10 y+x \\
\Rightarrow & x-y=2 \tag{ii}
\end{align*}
$$

On solving (i) \& (ii) $x=6, y=4$
$\therefore \quad$ Required number $=64$
28. If 1 and -2 are the zeroes of the polynomial $\left(x^{3}-4 x^{2}-7 x+10\right)$, find its third zero.

Sol. The two factors of polynomials are $(x-1),(x+2)$
$(\mathrm{x}-1)(\mathrm{x}+2)=\mathrm{x}^{2}+\mathrm{x}-2$

$$
\frac{x^{3}-4 x^{2}-7 x+10}{x^{2}+x-2}=(x-5)
$$

Third zero $=5$
29. Draw a circle of radius 3 cm . From a point 7 cm away from its centre, construct a pair of tangents to the circle.

Sol. Drawing a circle of radius 3 cm , marking
Centre 0 and taking a po int P such that
$\mathrm{OP}=7 \mathrm{~cm}$
Constructing two tangents
OR
Draw a line segment of $\mathbf{8 ~ c m}$ and divide it in the ratio 3:4.
Drawing a line segment of 8 cm
Dividing it in the ratio $3: 4$
30. In Fig. 3, arrangement of desks in a classroom is shown. Ashima, Bharti and Asha are seated at A, B and C respectively. Answer the following:
(i) Find whether the girls are sitting in a line.
(ii) If A, B and C are collinear, find the ratio in which point B divides the line segment joining A and C.

Fig. 3
Sol. Coordinates of $\mathrm{A}(3,1)$

$$
\begin{equation*}
\mathrm{B}(6,4) \tag{8,6}
\end{equation*}
$$

(i) Area of $(\triangle \mathrm{ABC})=\frac{1}{2}[3(4-6)+6(6-1)+8(1-4)]$

$$
=0
$$

Yes they are sitting in same line
(ii) Let $\mathrm{AB}: \mathrm{BC}=\mathrm{k}: 1$

$$
\begin{array}{ll}
6=\frac{8 \mathrm{k}+3}{\mathrm{k}+1} & \frac{1}{2} \\
\mathrm{k}=\frac{3}{2} \text { or Ratio }=3: 2 & \frac{1}{2} \\
\hline
\end{array}
$$

31. Prove that $\frac{\cos \theta}{(1-\tan \theta)}+\frac{\sin \theta}{(1-\cot \theta)}=(\cos \theta+\sin \theta)$

Sol. LHS $=\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta}$

$$
\begin{align*}
& =\frac{\cos ^{2} \theta}{\cos \theta-\sin \theta}+\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta} \tag{1}\\
& =\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos \theta-\sin \theta} \\
& =\cos \theta+\sin \theta=\text { RHS }
\end{align*}
$$

OR

Prove that $(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta$.
Sol. $(\sin \theta+\operatorname{cosec} \theta)+(\cos \theta+\sec \theta)^{2}$

$$
\begin{array}{lr}
=\sin ^{2} \theta+\operatorname{cosec}^{2} \theta+2+\cos ^{2} \theta+\sec ^{2} \theta+2 & \frac{1}{2}+\frac{1}{2} \\
=\sin ^{2} \theta+1+\cot ^{2} \theta+2+\cos ^{2} \theta+1+\tan ^{2} \theta+2 & \frac{1}{2}+\frac{1}{2} \\
=7+\tan ^{2} \theta+\cot ^{2} \theta & 1
\end{array}
$$

32. If $\sqrt{2}$ is given as an irrational number, then prove that $(7-2 \sqrt{2})$ is an irrational number.

Sol. Let $7-2 \sqrt{2}=m$, where m is a rational number

$$
\begin{equation*}
\sqrt{2}=\frac{7-m}{2} \tag{1}
\end{equation*}
$$

Irrational $=$ Rational
\Rightarrow LHS \neq RHS
It means out assumption is wrong.
Hence, $7-2 \sqrt{2}$ is irrational

OR

Find HCF of 44, 96 and 404 by prime factorization method. Hence find their LCM.
Sol. $\quad 44=2^{2} \times 1$

$$
\begin{aligned}
& 96=2^{5} \times 3 \\
& 404=2^{2} \times 101
\end{aligned}
$$

$$
\mathrm{HCF}=2^{2}=4
$$

$\mathrm{LCM}=2^{5} \times 11 \times 3 \times 101$

$$
=106656
$$

33. A 20 m deep well with diameter 7 m is dug and the earth from digging is evenly spread out to form a platform $22 \mathbf{m} \times 14 \mathrm{~m}$. Find the height of the platform.

Sol. Let height of platform be hm

$$
\begin{aligned}
& \therefore \pi\left(\frac{7}{2}\right)^{2} \times 20=22 \times 14 \times \mathrm{h} \\
& \Rightarrow \mathrm{~h}=\frac{35}{44} \pi
\end{aligned}
$$

OR
$\mathrm{h}=2.5 \mathrm{~m}$
34. Two tangents TP and TQ are drawn to a circle with centre \mathbf{O} from an external point T. Prove that $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$.

Sol.
Correct figure

$$
\begin{align*}
& \angle \mathrm{OPQ}+\angle \mathrm{QPT}=90^{\circ} \tag{i}\\
& \angle \mathrm{PTQ}=180^{\circ}-2 \angle \mathrm{QPT} \tag{ii}
\end{align*}
$$

By (i) \& (ii)

$$
\angle \mathrm{PTQ}=180^{\circ}-2\left(90^{\circ}-\angle \mathrm{OPQ}\right)
$$

$$
\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}
$$

SECTION D

Question Nos. 35 to 40 carry 4 marks each.
35. In a right triangle, prove that the square of the hypotenuse is equal to sum of squares of the other two sides.

Sol. For correct given, to prove, construction and figure

$$
4 \times \frac{1}{2}=2
$$

For correct proof
OR
Prove that the tangents drawn from an external point to a circle are equal in length.

Sol. For correct given, to prove, construction and figure
36. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60°, and the angle of depression of its foot is 45°. Find the height of the tower. Given that $\sqrt{3}=1.732$.

Sol.

Correct figure
$\tan 45^{\circ}=\frac{7}{x}$
$\Rightarrow x=7 \mathrm{~m}$
$\tan 60^{\circ}=\frac{\mathrm{h}-7}{\mathrm{x}}$

$$
\begin{equation*}
\mathrm{x} \sqrt{3}=\mathrm{h}-7 \tag{ii}
\end{equation*}
$$

Solving (i) and (ii), $\mathrm{h}=7(\sqrt{3}+1)$

$$
\begin{aligned}
& =7 \times 2.732 \\
& =19.124 \mathrm{~m}
\end{aligned}
$$

37. The sum of first 6 terms of an A.P. is 42 . The ratio of its 10 th term to $30^{\text {th }}$ term is $1: 3$. Find the first and the 13th term of the A.P.

Sol. Here, $\frac{6}{2}(2 a+5 d)=42$

$$
\begin{equation*}
\Rightarrow 2 a+5 d=14 \tag{i}
\end{equation*}
$$

Also,

$$
\begin{align*}
& \frac{a+9 d}{a+29 d}=\frac{1}{3} \tag{ii}\\
\Rightarrow & a=d
\end{align*}
$$

Solving (i) and (ii), $7 \mathrm{a}=14$

$$
\Rightarrow a=2
$$

$$
\mathrm{d}=2
$$

$$
a_{13}=a+12 d=26
$$

OR
Find the sum of all odd numbers between 100 and 300.
Sol. Odd number between 100 to 300 are

$$
\begin{aligned}
& 101,103 \ldots 299 \\
& 299=101+(\mathrm{n}-1) 2 \\
& \Rightarrow \mathrm{n}=100 \\
& \mathrm{~S}_{\mathrm{n}}=\frac{100}{2}(101+299) \\
& \quad=20,000
\end{aligned}
$$

38. A hemispherical depression is cut out from one face of a cubical wooden block of edge 21 cm , such that the diameter of the hemisphere is equal to edge of the cube. Determine the volume of the remaining block.

Sol. Let r be the radius of hemisphere $\quad \therefore \mathrm{r}=\frac{21}{2} \mathrm{~cm}$
Volume of remaining block $=a^{3}-\frac{2}{3} \pi r^{3}$

$$
\begin{align*}
& =(21)^{3}-\frac{2}{3} \pi \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2} \tag{2}\\
& =9261\left[1-\frac{\pi}{12}\right] \mathrm{cm}^{3} \tag{1}\\
& =6853 \mathrm{~cm}^{3} \text { (Approx.) }
\end{align*}
$$

OR
A solid metallic cylinder of diameter 12 cm and height 15 cm is melted and recast into 12 toys in the shape of a right circular cone mounted on a hemisphere of same radius. Find the radius of the hemisphere and total height of the toy, if the height of the cone is 3 times the radius.

Sol. Here, $r=6 \mathrm{~cm}$

$$
\begin{aligned}
& \pi(6)^{2} \times 15=12\left[\frac{1}{3} \pi \mathrm{r}^{2} \times 3 \mathrm{r}+\frac{2}{3} \pi \mathrm{r}^{3}\right] \\
& 36 \times 15=\frac{12}{3}\left[3 \mathrm{r}^{3}+2 \mathrm{r}^{3}\right] \\
& 9 \times 15=5 \mathrm{r}^{3} \\
& \mathrm{r}=3 \mathrm{~cm} \\
& \text { Total height }=12 \mathrm{~cm}
\end{aligned}
$$

39. The difference of the squares of two numbers is 180 . The square of the smaller number is 8 times the larger number. Find the two numbers.

Sol. Let the numbers are $x, y(x>y)$

$$
\begin{aligned}
& x^{2}-y^{2}=180 \\
& y^{2}=8 x
\end{aligned}
$$

On solving $\mathrm{x}^{2}-8 \mathrm{x}-180=0$

$$
\begin{aligned}
& (x-1)(x+10)=0 \\
& x=18,-10(\text { rejected })
\end{aligned}
$$

Numbers are 18,12 or $18,-12$
40. Find the mean of the following frequency distribution :

Classes	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$
Frequency	6	11	21	23	14	5

Sol.

$\mathbf{C I}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{d}_{\mathbf{i}}$	$\mathbf{u}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{u}_{\mathbf{i}}$
$5-15$	6	10	-20	-2	-12
$15-25$	11	20	-10	-1	-11
$25-35$	21	30	0	0	0
$35-45$	23	40	10	1	23
$45-55$	14	50	20	2	28
$55-65$	5	60	30	3	15
Total	80				43

$$
\begin{align*}
\text { Mean } & =\mathrm{A}+\frac{\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}} \times \mathrm{h} \\
& =30+\frac{43}{80} \times 10 \tag{1}\\
& =35.375
\end{align*}
$$

