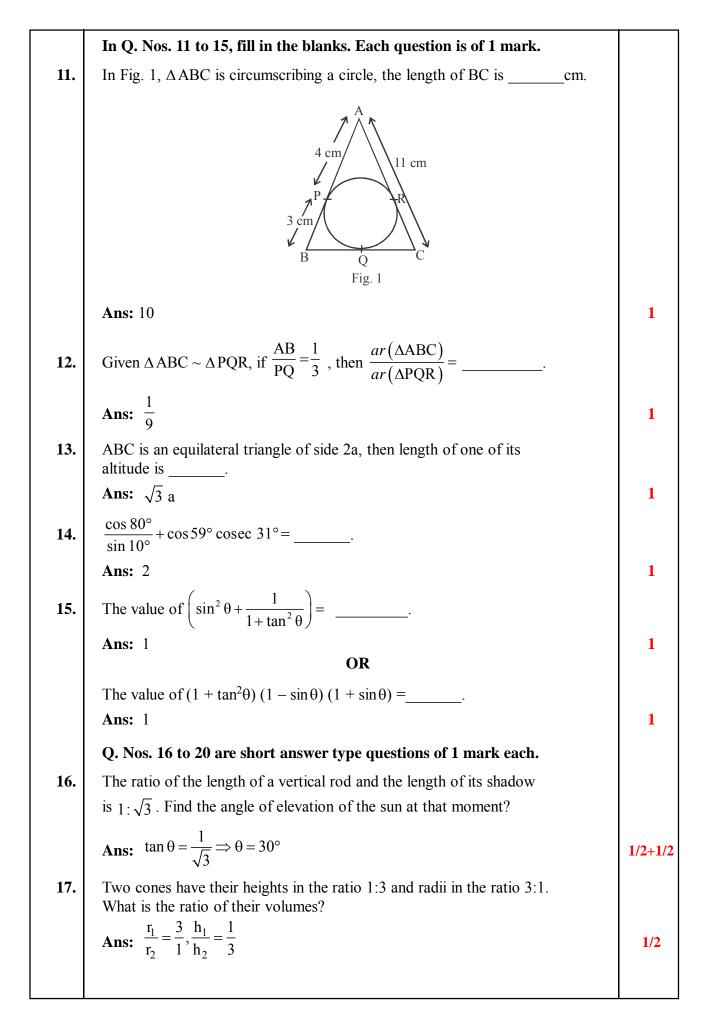
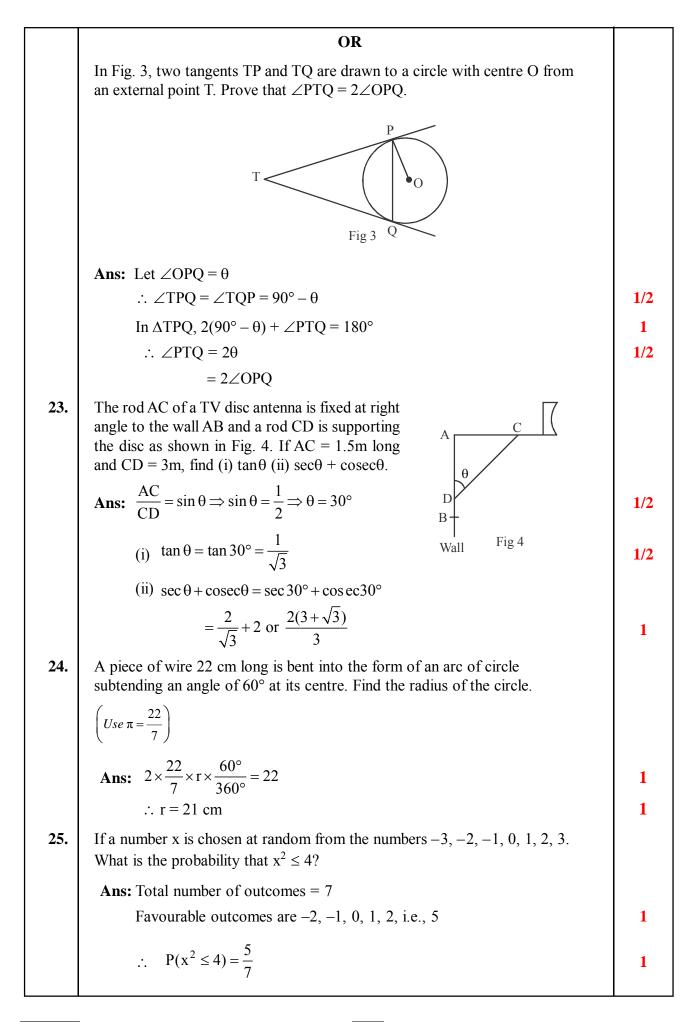
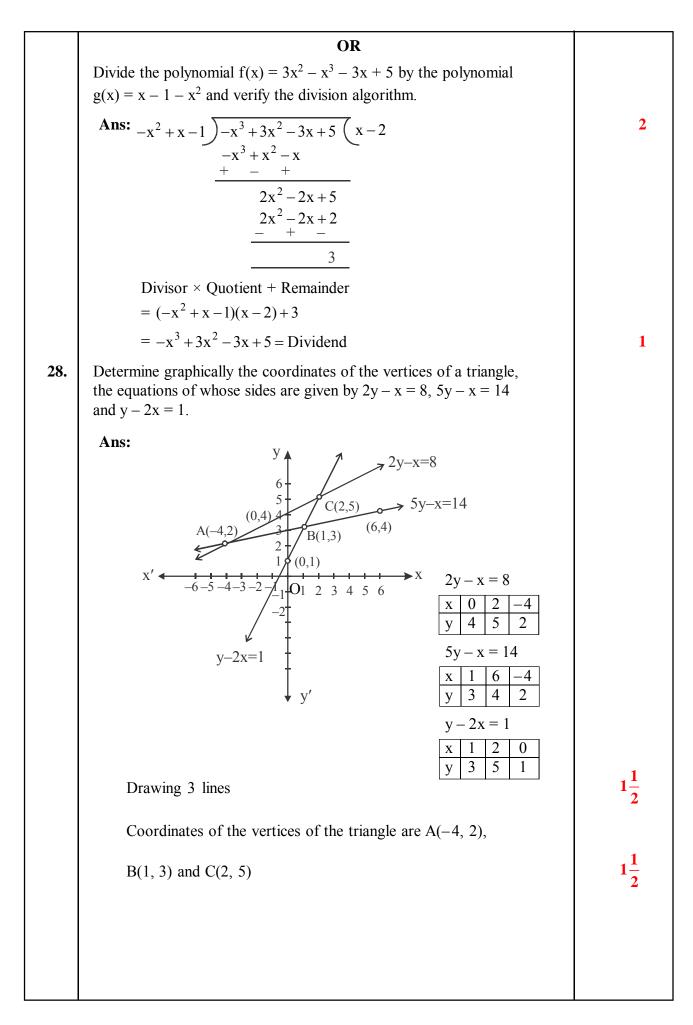
Strictly Confidential - (For Internal and Restricted Use Only) Secondary School Examination-2020 Marking Scheme - Mathematics 30/1/1, 30/1/2, 30/1/3


General instructions

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. **Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.**
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them. In class-X, while evaluating two competency based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, marks should be awarded.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer 'X"be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- **5.** If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 6. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks _____(example 0-100 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
- **10.** Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
- 11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on a reply.
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying.
 - Wrong transfer of marks from the answer book to online award list.
 - Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
 - Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
- 13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- **14.** The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- **15.** Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- **16.** The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

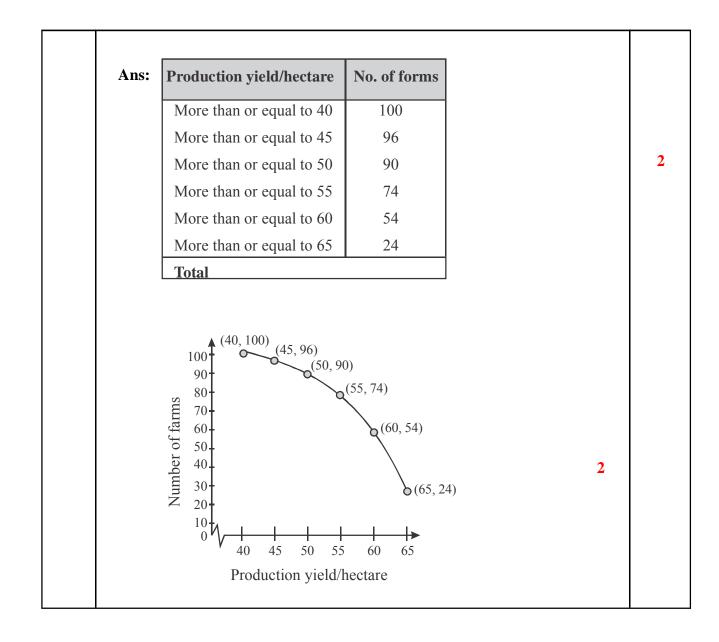

.30/1/1.

1


	QUESTION PAPER CODE 30/1/1 EXPECTED ANSWER/VALUE POINTS SECTION – A								
		multiple choice type	e question of 1 mark	c each.					
	Select the correct of	ption.			Marks				
Q.No.					VIAIKS				
1.	If one of the zeroes of k is	of the quadratic poly	nomial $x^2 + 3x + k$ is	s 2, then the value					
	(a) 10	(b) –10	(c) −7	(d) -2					
	Ans: (b) -10				1				
2.	The total number of	factors of a prime m	umber is						
	(a) 1	(b) 0	(c) 2	(d) 3					
	Ans: (c) 2				1				
3.	The quadratic polyn 6, is	omial, the sum of wh	ose zeroes is -5 and	their product is					
		(b) $x^2 - 5x + 6$	(c) $x^2 - 5x - 6$	$(\mathbf{d}) - x^2 + 5x + 6$					
	Ans: (a) $x^2 + 5x + $	6			1				
4.	The value of k for which the system of equations $x + y - 4 = 0$ and $2x + ky = 3$ has no solution, is								
	(a) -2	(b) ≠2	(c) 3	(d) 2					
	Ans: (d) 2				1				
5.	The HCF and the LO	CM of 12, 21, 15 resp	pectively are						
	(a) 3,140	(b) 12,420	(c) 3,420	(d) 420,3					
	Ans: (c) 3,420				1				
6.		which $2x_{x}(x + 10)$ and	(3x+2) are the thr	ree					
	consecutive terms o (a) 6	(b) -6	(c) 18	(d) -18					
	Ans: (a) 6		(0) 10	(u) 10	1				
7.		AP is p and the comr	non difference is a t	hen its 10 th term is					
,.	(a) $q + 9p$	(b) $p - 9q$	(c) $p + 9q$	(d) $2p + 9q$					
	(a) $q + 9p$ Ans: (c) $p + 9q$	$(\mathbf{n}) \mathbf{h} = \mathbf{M}$	(c) h -)d	(u) 2p ·)y	1				
8.		en the points (a $\cos \theta$	$+ b \sin \theta$ (0) and (0)	$a \sin \theta - b \cos \theta$ is					
0.									
		(b) $a^2 - b^2$	(c) $\sqrt{a^2+b^2}$	(a) $\sqrt{a^2 - b^2}$					
	Ans: (c) $\sqrt{a^2 + b^2}$				1				
9.		divides the line segme 1 : 2, then the value		A(2, -2) and					
	(a) 1	(b) 2	(c) -2	(d) −1					
	Ans: (d) –1				1				
10.	The value of p, for v	which the points $A(3,$	1), B(5, p) and C(7,	-5) are collinear, is					
	(a) - 2	(b) 2	(c) −1	(d) 1					
	Ans: (a) –2				1				

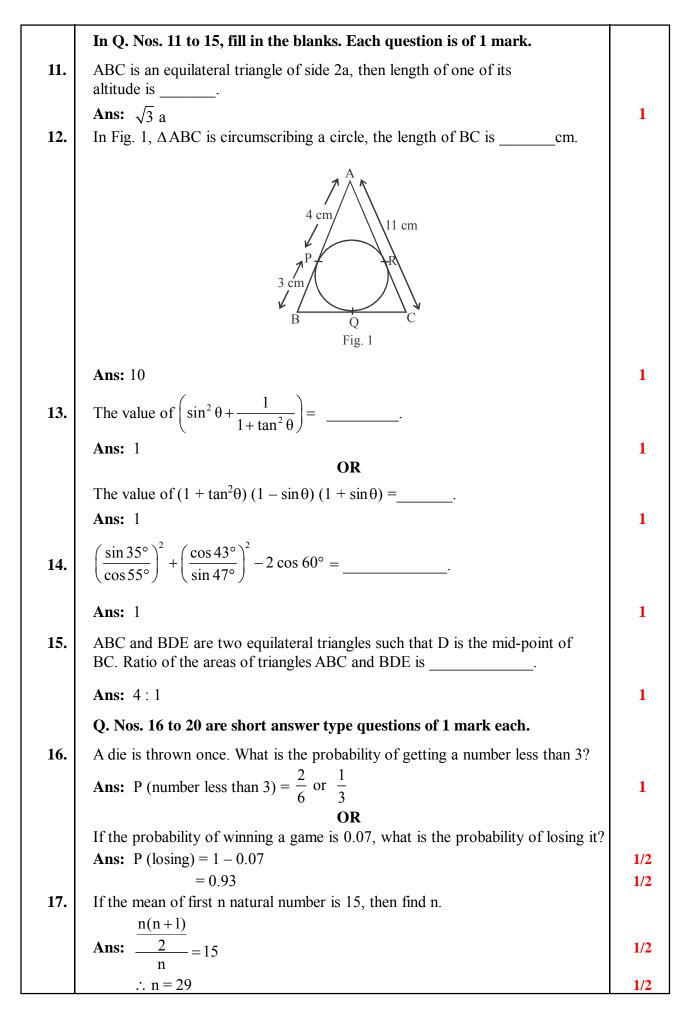
i		
18. 19.	$\therefore \text{ Ratio of volumes} = \frac{\frac{1}{3}\pi r_1^2 h_1}{\frac{1}{3}\pi r_2^2 h_2} = 3:1$ A letter of English alphabet is chosen at random. What is the probability that the chosen letter is a consonant. Ans: P (consonant) = $\frac{21}{26}$ A die is thrown once. What is the probability of getting a number less than 3? Ans: P (number less than 3) = $\frac{2}{6}$ or $\frac{1}{3}$ OR	1/2 1 1
	If the probability of winning a game is 0.07, what is the probability of losing it?	
		4.10
	Ans: P (losing) = $1 - 0.07$	1/2
	= 0.93	1/2
20.	If the mean of first n natural number is 15, then find n.	
	n(n+1)	
	Ans: $2 - 15$	1/2
	Ans: $\frac{2}{n} = 15$	_,_
	\therefore n = 29	1/2
	SECTION – B	
	Q. Nos. 21 to 26 carry 2 marks each.	
21.	Show that $(a - b)^2$, $(a^2 + b^2)$ and $(a + b)^2$ are in AP.	
	Ans: $(a^2 + b^2) - (a - b)^2 = 2ab$	1
		-
	$(a+b)^2 - (a^2 + b^2) = 2ab$	1
	Common difference is same. ∴ given terms are in AP	
22.	In Fig. 2 DE AC and DC AP. Prove that $\frac{BE}{EC} = \frac{BC}{CP}$.	
	EC CP	
	B = E C P Fig 2	
	Ans: In $\triangle ABC$, DE AC, $\therefore \frac{BD}{DA} = \frac{BE}{EC}$ (i)	1
	In $\triangle ABP$, DC AP, $\therefore \frac{BD}{DA} = \frac{BC}{CP}$ (ii)	1/2
	From (i) & (ii), $\frac{BE}{EC} = \frac{BC}{CP}$	1/2

26.	Find the	mean	of the	followi	ng distril	oution:					
	Class:		3-5	5-7	7-9	9-11	11-13				
	Frequen	icy:	5	10	10	7	8				
	Ans:	Clas	ses	X _i	\mathbf{f}_{i}	f _x x _i					11/2
		3 -	5	4	5	20	1				
		5 –	7	6	10	60					
		7 –		8	10	80					
		9 – 1	11	10	7	70					
		11 –	13	12	8	96					
		Tota	al		40	326	1				
			Į_	Į		<u>.</u>					
		$\overline{\mathbf{x}} = $	$\sum f_i x_i$	$-=\frac{326}{40}$	= 8 15						1/0
		Λ - 1	$\sum f_i$	40	- 0.15	~ -					1/2
	Find the	mada	oftho	fallarri	aa data.	OR					
	Find the Class:	mode	0-20		40-60	60-80	80-100	110-120	120-140		
	Frequen	icy:	6	8	10 00	12	6	5	3		
	Ans: 1	-	class :	1 60 – 80						J	1/2
						60 1	2-10	v 20			
	I	Mode =	$\ell + \frac{1}{2}$	$f_1 - f_0 - f_0$	$\overline{\mathbf{f}_2} \times \mathbf{h} =$	$\frac{60 + 100}{24}$	-10-6	× 20			1
		=	60 +	5 = 65							1/2
						ΓΙΟN -					
					carry 3						
27.		-	-	-	l whose + bx + c,		-	procal of th	ne zeroes		
	Ans:	f(x) = a	$ax^2 + b$	x + c							
		$\alpha + \beta =$	$-\frac{b}{a}$, c	$\alpha\beta = \frac{c}{a}$							1/2
	נ	New su	m of z	eroes =	$\frac{1}{\alpha} + \frac{1}{\beta} =$	$-\frac{b}{c}$					1
	New sum of zeroes $=$ $\frac{1}{\alpha} + \frac{1}{\beta} = -\frac{b}{c}$ New product of zeroes $=$ $\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{a}{c}$										1
		1			α	рс					
	∴ Req	uired q	uardra	tic poly	momial =	$= x^{2} + \frac{1}{2}$	$\frac{a}{c}x + \frac{a}{c}c$	or $\left(cx^2+b\right)$	bx + a		1/2



OR If 4 is the zero of the cubic polynomial $x^3 - 3x^2 - 10x + 24$, find its other two zeroes. Ans: $x - 4$ is a factor of given polynomial. $x - 4 \int x^3 - 3x^2 - 10x + 24 (x^2 + x - 6) + (x^2 - 4x) - (x^2 - 4x) + (x^2 -$	2
$x-4 \int x^{3} - 3x^{2} - 10x + 24 (x^{2} + x - 6)$ $x^{3} - 4x^{2}$ $x^{2} - 4x$ $x^{2} - 4x$ $-\frac{y^{2} - 4x}{-4x}$ $-\frac{y^{2} - 4x}{$	2
$x^{f} - 10x + 24$ $x^{f} - 4x$ $-\frac{4}{7}$ $-\frac{6x}{7} + \frac{24}{7}$ $-\frac{6x}{7} + \frac{2}{7}$	2
$\frac{-7 + \frac{-6x + 24}{-6x + 24}}{0}$ $x^{2} + x - 6 = (x + 3)(x - 2)$ $\therefore \text{ Other than zeroes are } -3 \text{ and } 2.$ 29. In a flight of 600 km, an aircraft was slowed due to bad weather. Its average speed for the trip was reduced to 200 km/hr and time of flight increased by 30 minutes. Find the original duration of flight. Ans: Let the speed of aircraft be x km/hr	2
 ∴ Other than zeroes are -3 and 2. 29. In a flight of 600 km, an aircraft was slowed due to bad weather. Its average speed for the trip was reduced to 200 km/hr and time of flight increased by 30 minutes. Find the original duration of flight. Ans: Let the speed of aircraft be x km/hr 	
 ∴ Other than zeroes are -3 and 2. 29. In a flight of 600 km, an aircraft was slowed due to bad weather. Its average speed for the trip was reduced to 200 km/hr and time of flight increased by 30 minutes. Find the original duration of flight. Ans: Let the speed of aircraft be x km/hr 	
 ∴ Other than zeroes are -3 and 2. 29. In a flight of 600 km, an aircraft was slowed due to bad weather. Its average speed for the trip was reduced to 200 km/hr and time of flight increased by 30 minutes. Find the original duration of flight. Ans: Let the speed of aircraft be x km/hr 	
29. In a flight of 600 km, an aircraft was slowed due to bad weather. Its average speed for the trip was reduced to 200 km/hr and time of flight increased by 30 minutes. Find the original duration of flight.Ans: Let the speed of aircraft be x km/hr	
Its average speed for the trip was reduced to 200 km/hr and time of flight increased by 30 minutes. Find the original duration of flight. Ans: Let the speed of aircraft be x km/hr	1
-	
600 600 30	
000 000 50	
$\therefore \ \frac{600}{x - 200} - \frac{600}{x} = \frac{30}{60}$	1
$\Rightarrow x^2 - 200x - 240000 = 0$	1
(x - 600) (x + 400) = 0	
x = 600, -400 (Rejected) Speed of aircraft = 600 km/hr	1/2
\therefore Duration of flight = 1 hr	1/2
30. Find the area of triangle PQR formed by the points $P(-5, 7)$, $Q(-4, -5)$ and $R(4, 5)$.	
Ans: $ar(PQR) = \frac{1}{2} \left[-5(-5-5) - 4(5-7) + 4(7+5) \right] sq.$ units	2
$=\frac{1}{2}[50+8+48]$ sq. units	
= 53 sq. units	1
OR If the point C(-1 , 2) divides internally the line segment joining A(2, 5) and B(x, y) in the ratio 3 : 4, find the coordinates of B.	
Ans: Coordinates of C arc $\left(\frac{3x+8}{7}, \frac{3y+20}{7}\right) = (-1,2)$ $\Rightarrow x = -5, y = -2$ \therefore Coordinates of B are $(-5, -2)$ (2, 5) (-1, 2) (x, y)	1
Ans: Coordinates of C arc $\left(\frac{7}{7}, \frac{3}{7}\right) = (-1, 2)$ 3:4	*
$\Rightarrow x = -5, y = -2$ $A \bullet \bullet \bullet B$ $(2, 5) (-1, 2) (x, y)$	4
$\therefore \text{ Coordinates of B are } (-5, -2) \qquad (2, 5) \qquad (-1, 2) \qquad (x, y)$	2 1 1/2

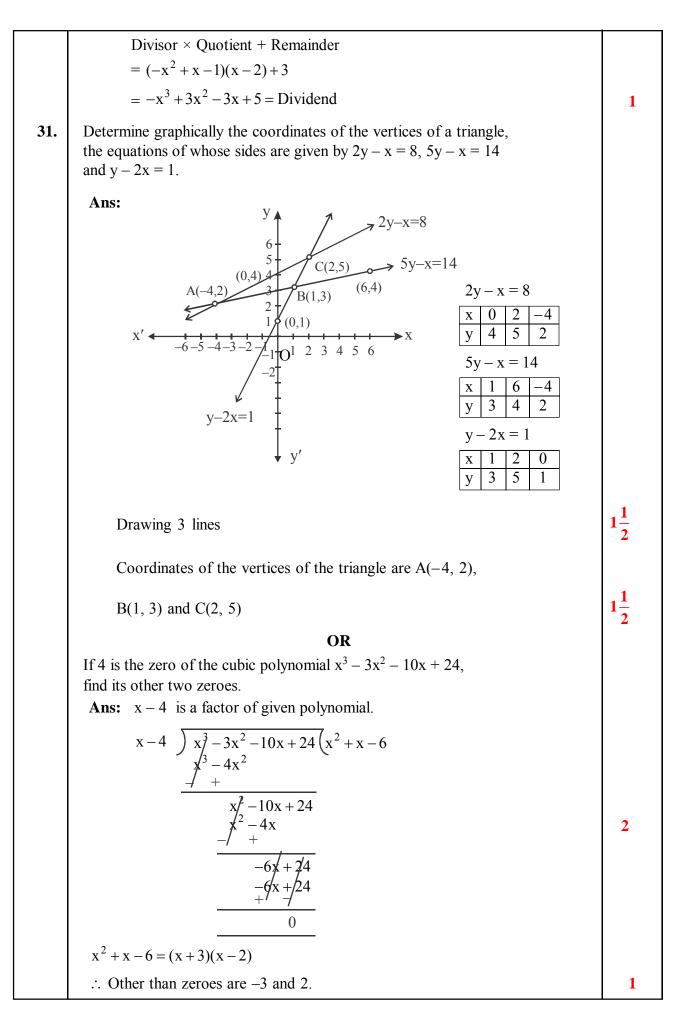
	AD AE A	
31.	In Fig.5, $\angle D = \angle E$ and $\frac{AD}{DB} = \frac{AE}{EC}$,	
	prove that BAC is an isosceles triangle. $D \swarrow_E$	
	Ans: $\angle D = \angle E \Rightarrow AE = AD$ $B \xrightarrow{Fig 5} C$	1
	$\therefore \frac{AD}{DB} = \frac{AE}{EC} \implies DB = EC$	1/2
	$\Rightarrow AD + DB = AE + EC$	1
	$\therefore AB = AC$	1/2
	Hence $\triangle BAC$ is an isosceles triangle.	
32.	In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then prove that the angle opposite to the first side is a right angle.	
	Ans: For correct given, To prove, construction and figure.	$1\frac{1}{2}$ $1\frac{1}{2}$
	For correct proof.	$1\frac{1}{2}$
33.	If $\sin\theta + \cos\theta = \sqrt{3}$, then prove that $\tan\theta + \cot\theta = 1$.	
	Ans: $\sin \theta + \cos \theta = \sqrt{3} \implies (\sin \theta + \cos \theta)^2 = (\sqrt{3})^2$	1
	$\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 3 \Longrightarrow \sin\theta\cos\theta = 1$	1
	L.H.S = $\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{1}{\cos \theta \sin \theta} = 1 = \text{R.H.S}$	1
34.	A cone of base radius 4 cm is divided into two parts by drawing a plane through the mid-point of its height and parallel to its base. Compare the volume of the two parts.	
	Ans: $\triangle ABC \sim \triangle ADE, \ \frac{h}{2h} = \frac{BC}{4}$	cor. fig 1/2
	$ A \qquad 2h \qquad 4 \\ A \qquad \therefore BC = 2 cm $	1
	Ratio of volumes of two parts	1
	$\frac{1}{3}\pi \times 2^2 \times h$	
	$= \frac{\frac{1}{3}\pi \times 2^2 \times h}{\frac{1}{3}\pi \times (2^2 + 4^2 + 2 \times 4) \times h}$	1
	∠ D ^{LL} 4 cm E V 3	
	$=\frac{4}{28}=\frac{1}{7}$ or 1 : 7 (accept 7 : 1 also)	1/2


	SECTION – D	
	Question numbers 35 to 40 carry 4 marks each.	
35.	Show that the square of any positive integer cannot be of form $(5q + 2)$ or $(5q + 3)$ for any integer q.	
	Ans: Let a be any positive integer. Take $b = 5$ as the divisor.	
	\therefore a = 5m + r, r = 0,1,2,3,4	1
	Case-1 : $a = 5m \Rightarrow a^2 = 25m^2 = 5(5m^2) = 5q$	1/2
	Case-2 : $a = 5m+1 \implies a^2 = 5(5m^2 + 2m) + 1 = 5q + 1$	for
	Case-3 : $a = 5m+2 \implies a^2 = 5(5m^2 + 4m) + 4 = 5q + 4$	each
	Case-4 : $a = 5m+3 \implies a^2 = 5(5m^2 + 6m + 1) + 4 = 5q + 4$	case
	Case-5 : $a = 5m+4 \implies a^2 = 5(5m^2 + 8m + 3) + 1 = 5q + 1$	$=2\frac{1}{2}$
	Hence square of any positive integer cannot be of the form $(5q + 2)$ or $(5q + 3)$ for any integer q.	1/2
	OR	
	Prove that one of every three consecutive positive integers is divisible by 3. Ans: Let n be any positive integer. Divide it by 3.	
	\therefore n = 3q + r, r = 0, 1, 2	1
	Case-1 : $n = 3q$ (divisible by 3)	
	n + 1 = 3q + 1, n + 2 = 3q + 2	1 for
	Case-2 : $n = 3q + 1 \implies n + 1 = 3q + 2$, $n + 2 = 3q + 3$ (divisible by 3)	each
	Case-3 : $n = 3q + 2 \Rightarrow n + 1 = 3q + 3$ (divisible by 3), $n + 2 = 3q + 4$	case = 3
36.	The sum of four consecutive numbers in AP is 32 and the ratio of product of the first and last terms to the product of two middle terms is 7:15. Find the numbers.	
	Ans: Let four consecutive number be $a - 3d$, $a - d$, $a + d$, $a + 3d$	1/2
	Sum = 32 \therefore 4a = 32 \Rightarrow a = 8	1/2
	$\frac{(a-3d)(a+3d)}{(a-d)(a+d)} = \frac{7}{15} \Longrightarrow 15(64-9d^2) = 7(64-d^2)$	1
	$\therefore d^2 = 4 \implies d = \pm 2$	1
	Four numbers are 2, 6, 10, 14.	1
	OR	
	Solve: $1+4+7+10++x=287$	
	Ans: $x = a_n = 1 + 3n - 3 = 3n - 2$	1
	$S_n = 287 \Longrightarrow \frac{n}{2} [1 + 3n - 2] = 287$	1
	$\therefore 3n^2 - n - 574 = 0$	1/2
	$(n-14)(3n+41) = 0 \Longrightarrow n = 14$	1
	$\therefore x = 3n - 2 = 40$	1/2

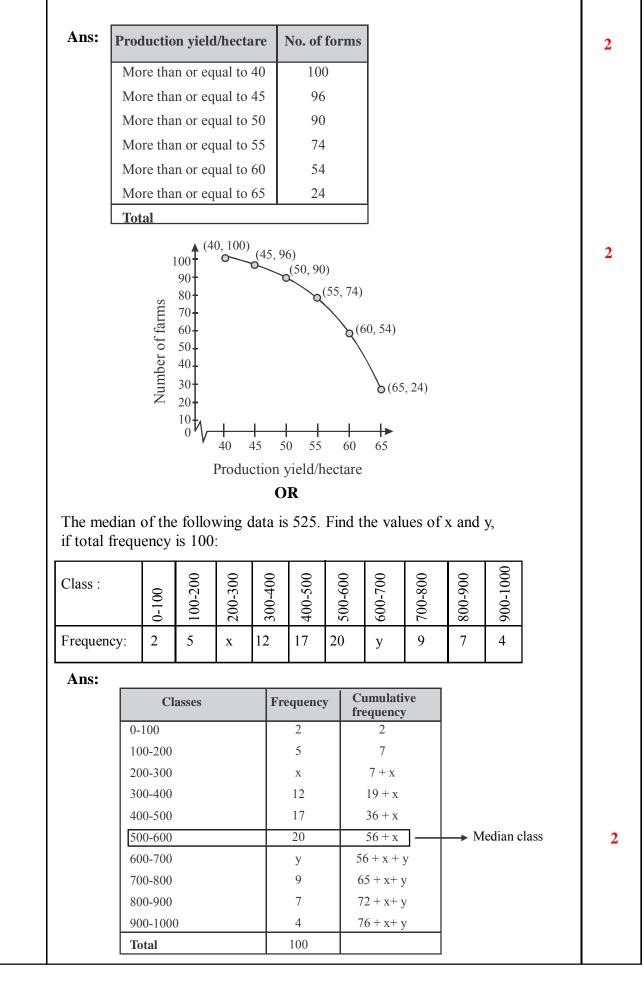
37.	Draw a line segment AB of length 7 cm. Taking A as centre, draw a circle of radius 3 cm and taking B as centre, draw another circle of radius 2 cm. Construct tangents to each circle from the centre of the other circle.	
	Ans: Constructing the circles of radii 3 cm and 2 cm. Constructing the tangents.	1 3
38.	A vertical tower stands on a horizontal plane and is surmounted by a vertical flag-staff of height 6 m. At a point on the plane, the angle of elevation of the bottom and top of the flag-staff are 30° and 45° re-	
	spectively. Find the height of the tower. (Take $\sqrt{3} = 1.73$)	
	Ans:	cor. fig 1
	$\frac{h}{x} = \tan 30^{\circ}$ $\Rightarrow x = h\sqrt{3}$	1
	$\frac{6+h}{x} = \tan 45^\circ \implies 6+h = x$	1
	h $\therefore h = \frac{6}{\sqrt{3}-1} = 3(\sqrt{3}+1) = 3 \times 2.73 \text{ m}$ = 8.19 m	1
39.	A bucket in the form of a frustum of a cone of height 30 cm with radii of its lower and upper ends as 10 cm and 20 cm respectively. Find the capacity of the bucket. Also find the total cost of milk that can completely fill the	
	bucket at the rate of ₹ 40 per litre. $\left(Use \pi = \frac{22}{7} \right)$	
	Ans: Capacity of bucket = $\frac{1}{3}\pi h \left(r_1^2 + r_2^2 + r_1r_2\right)$	
	$= \frac{1}{3} \times \frac{22}{7} \times 30 (10^2 + 20^2 + 10 \times 20) \text{ cm}^3$	1
	$= 22000 \text{ cm}^3$	$1\frac{1}{2}$
	= 22l	1/2
	Cost of milk = ₹ 40 × 22 = ₹ 880	1
40.	The following table gives production yield per hectare (in quintals) of wheat of 100 farms of a village:	
	Production yield/hect. 40-45 45-50 50-55 55-60 60-65 65-70	
	No. of farms 4 6 16 20 30 24	
	Change the distribution to 'a more than' type distribution and draw its ogive.	

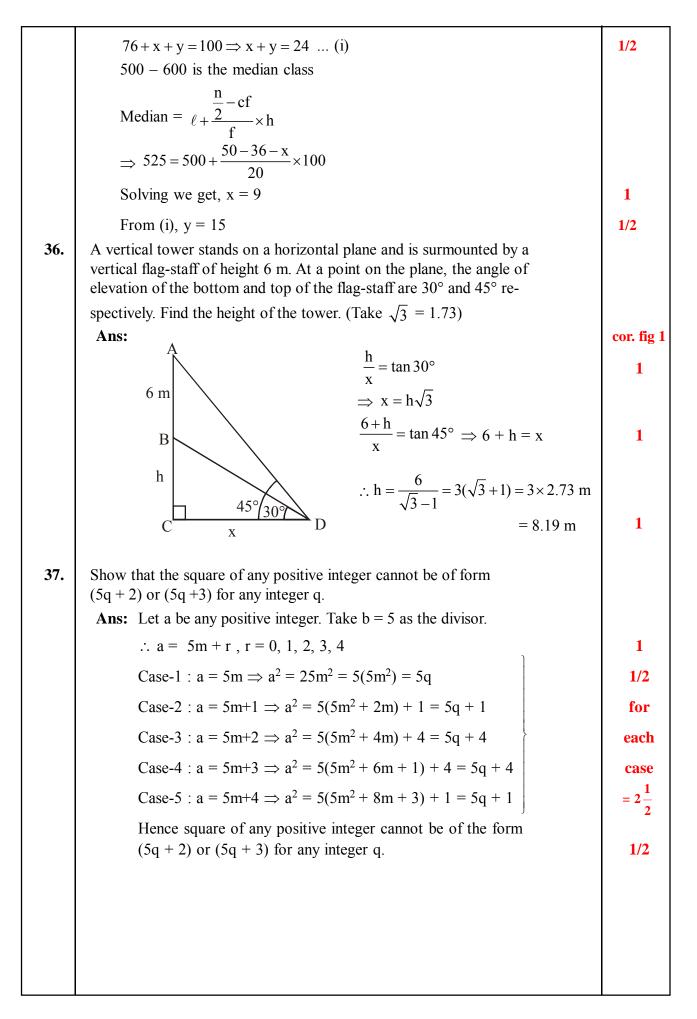
The median if total frequ			-	data i	O s 525		the v	alues of	x and	l y,		
Class : 0-100 0-100 0-100 Class : 200-300 0-100 0-100 0-100 00-200 00-100 000-0000 000000												
Frequency:	2	5	х	12	17	20	у	9	7	4		
Ans:						<u> </u>					1	
Class	es		Frequ	iency		nulativo uency	e					
0-100			2		псч	2						
100-200			5			7						
200-300			x		7	+ x						
300-400			12	2	19 + x							
400-500			17		36 + x							
500-600			20		50	56 + x		→ Median class				2
600-700			У		56 -	+x + y						
700-800	9		65 + x + y									
800-900			7		72 + x + y							
900-1000			4		76 + x+ y							
Total			10	0								
76 + x = 500 - 6	600 is	s the	mediar	n class)						1/
Mediar	$n = \ell$	$+\frac{\overline{2}}{f}$	cf —×h									
\Rightarrow 525	5 = 50	$0 + \frac{50}{2}$	$\frac{3-36}{20}$	$\frac{-x}{-x} \times 1$	00							
Solving	g we	get, x	= 9									1
Solving we get, $x = 9$ From (i), $y = 15$									1/2			

		QUESTION PAPE	ER CODE 30/1/2		
	F	EXPECTED ANSWE	CR/VALUE POINTS	S	
		SECTIO	DN – A		
	Q. NO. 1 to 10 ard Select the correct	e multiple choice typ option.	e question of 1 mar	k each.	
Q.No.					Marks
1.	The HCF and the L	CM of 12, 21, 15 res	pectively are		
	(a) 3,140 Ans: (c) 3,420	(b) 12,420	(c) 3,420	(d) 420,3	1
2.	consecutive terms of	which $2x_{,}(x + 10)$ and of an AP, is			
	(a) 6	(b) −6	(c) 18	(d) -18	
	Ans: (a) 6				1
3.	The value of k for $2x + ky = 3$ has no	which the system of ea solution, is	quations $x + y - 4 =$	0 and	
	(a) –2	(b) ≠2	(c) 3	(d) 2	
	Ans: (d) 2				1
4.	The first term of an	AP is p and the com	non difference is q, t	then its 10 th term is	
	(a) q + 9p	(b) p – 9q	(c) p + 9q	(d) $2p + 9q$	
_	Ans: (c) $p + 9q$				1
5.	6, is	nomial, the sum of wh		-	
		(b) $x^2 - 5x + 6$	(c) $x^2 - 5x - 6$	$(\mathbf{d}) - \mathbf{x}^2 + 5\mathbf{x} + 6$	
	Ans: (a) $x^2 + 5x + $	- 6			1
6.	The distance betwe	ten the points (a $\cos \theta$	+ b sin θ , 0) and (0,	a sin θ – b cos θ), is	
	(a) $a^2 + b^2$	(b) $a^2 - b^2$	(c) $\sqrt{a^2+b^2}$	(d) $\sqrt{a^2 - b^2}$	
	Ans: (c) $\sqrt{a^2 + b^2}$				1
7.	The total number o	f factors of a prime m	umber is		
	(a) 1	(b) 0	(c) 2	(d) 3	
	Ans: (c) 2				1
8.	B(-7, 4) in the ratio	divides the line segme $0 1 : 2$, then the value	of k is,		
	(a) 1 Ans: (d) -1	(b) 2	(c) -2	(d) −1	1
9.	Ans: $(d) -1$	which the points $\Lambda(2)$	1) $B(5, n)$ and $C(7, n)$	5) are collinear is	
7.	(a) -2	which the points A(3, (b) 2	(c) -1 (c) -1	(d) 1	
	Ans: (a) -2	(0) 2		(4) 1	1
10.		s of the quadratic poly	momial $x^2 + 3x + k$ is	s 2, then the value	
	(a) 10	(b) –10	(c) -7	(d) -2	
	Ans: (b) -10		(-) '	(<i>,</i> -	1


18.	Two cones have their heights in the ratio 1:3 and radii in the ratio 3:1. What is the ratio of their volumes?	
	Ans: $\frac{r_1}{r_2} = \frac{3}{1}, \frac{h_1}{h_2} = \frac{1}{3}$	1/0
	Ans: $r_2 = 1, h_2 = 3$	1/2
	$\frac{1}{2}\pi r^{2}h$	
	$\therefore \text{ Ratio of volumes} = \frac{\frac{1}{3}\pi r_1^2 h_1}{\frac{1}{2}\pi r_2^2 h_2} = 3:1$	1/2
	$\therefore \text{ Ratio of volumes} = \frac{1}{3}\pi r_2^2 h_2$	1/2
19.	The ratio of the length of a vertical rod and the length of its shadow	
	is $1:\sqrt{3}$. Find the angle of elevation of the sun at that moment?	
	Ans: $\tan \theta = \frac{1}{\sqrt{3}} \Longrightarrow \theta = 30^{\circ}$	1/2+1/2
20.	A die is thrown once. What is the probabiliy of getting an even prime number?	
	Ans: Number of even prime numbers on a die is 1 (i.e. 2)	1/2
	\therefore P (even prime number) = $\frac{1}{6}$	1/2
	SECTION – B	
	Q. Nos. 21 to 26 carry 2 marks each.	
21.	In Fig. 2 DE AC and DC AP. Prove that $\frac{BE}{EC} = \frac{BC}{CP}$.	
	B E C P Fig 2	
	Ans: In $\triangle ABC$, DE AC, $\therefore \frac{BD}{DA} = \frac{BE}{EC}$ (i)	1
	In $\triangle ABP$, DC AP, $\therefore \frac{BD}{DA} = \frac{BC}{CP}$ (ii)	1/2
	From (i) & (ii), $\frac{BE}{EC} = \frac{BC}{CP}$	1/2
	OR P	
	In Fig. 3, two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle PTQ = 2\angle OPQ$.	
	Fig 3 Q	

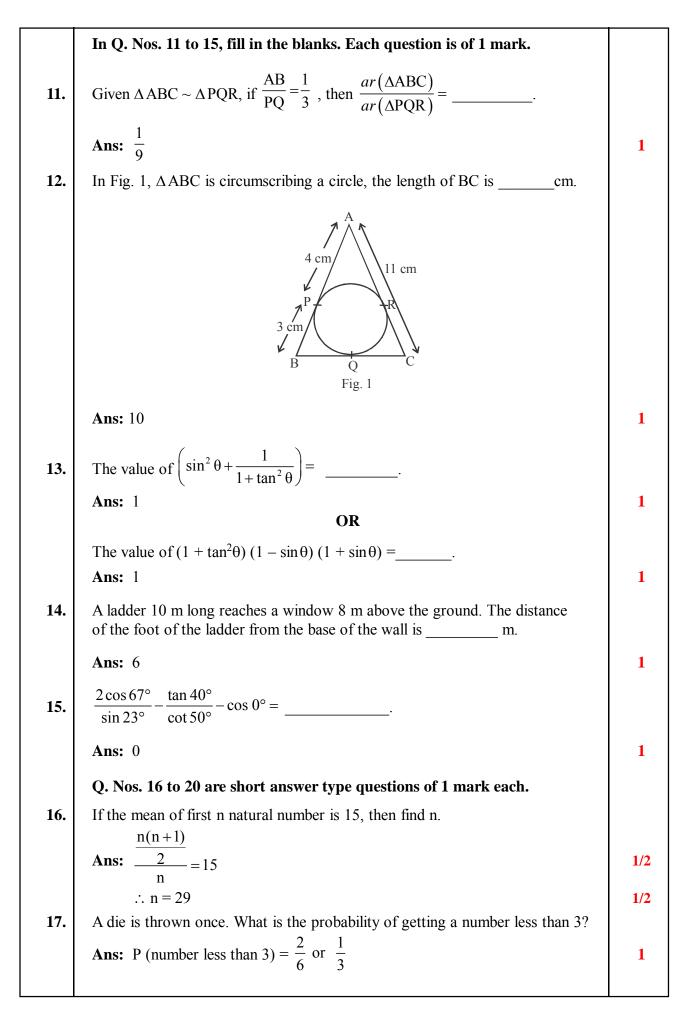
16

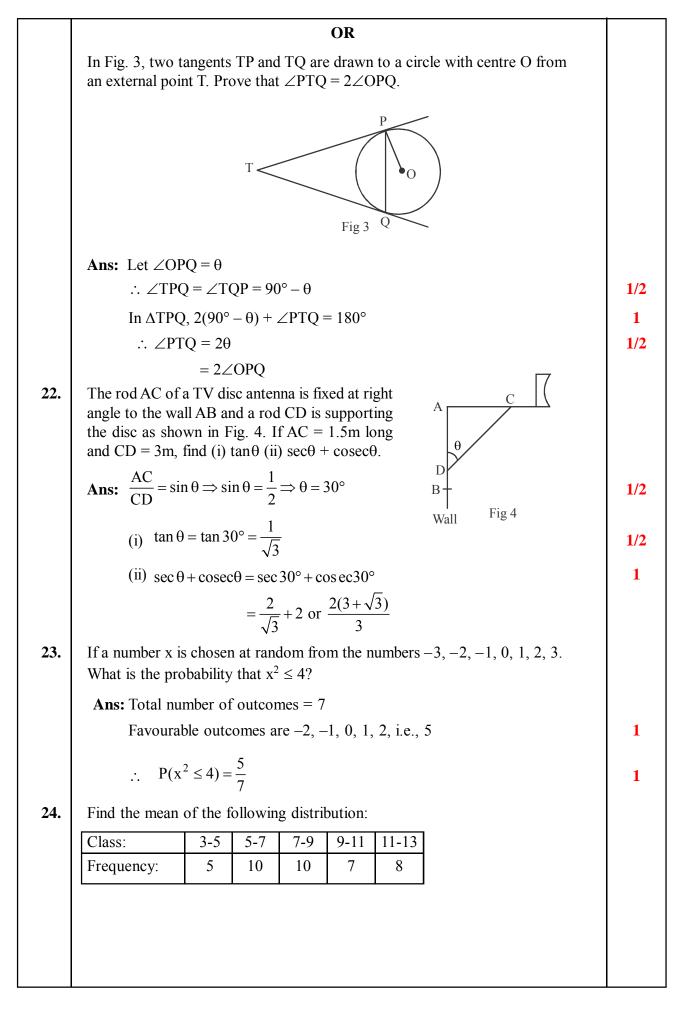

										—————	
		et ∠OPQ	-								
	•	.∠TPQ	=∠T	CQP = 9	$90^{\circ} - \theta$					1/2	
	Ir	n ∆TPQ,	2(90)	$^{\circ}- \theta) +$	·∠PTQ=	= 180°				1	
		∴∠PTQ	2 = 20	θ						1/2	
			= 22	∠OPQ							
22.	The rod AC of a TV disc antenna is fixed at right angle to the wall AB and a rod CD is supporting										
	angle to the wall AB and a rod CD is supporting the disc as shown in Fig. 4. If $AC = 1.5m \log A$										
	and $CD = 3m$, find (i) $\tan \theta$ (ii) $\sec \theta + \csc \theta$.										
	Ans. A	$\frac{AC}{M} = \sin \theta$	$\theta \rightarrow s$	$\sin \theta = -$	$\frac{1}{2} \rightarrow \theta = 3$	s0°		D		1/2	
	Ans: $\frac{AC}{CD} = \sin \theta \Rightarrow \sin \theta = \frac{1}{2} \Rightarrow \theta = 30^{\circ}$										
	(i) $\tan \theta =$	= tan 3	$30^{\circ} = -$	1			Wall	Fig 4	1/2	
				v	5						
	(1	1) $\sec \theta +$	⊦ cose		$c30^\circ + cc$		_			1	
				$=-\frac{1}{2}$	$\frac{2}{\sqrt{3}}$ + 2 or	$\frac{2(3+\sqrt{3})}{2}$	3)				
23.	If a num	ber x is	chose	v	5	5		321	, 0, 1, 2, 3.		
		the prob						- , ,	,,,,,,		
	Ans: T	otal num	nber o	of outco	mes = 7						
	F	avourabl	e out	comes	are –2, –	1, 0, 1,	2, i.e., 5			1	
				-							
	•	$P(x^2)$	≤4)=	$=\frac{s}{7}$						1	
24.	Find the	e mean o	f the	followi	ng distrib	oution:					
	Class:		3-5	5-7	7-9	9-11	11-13				
	Frequen	ncy:	5	10	10	7	8				
	L				1 1						
	Ans:	Class	es	X _i	\mathbf{f}_{i}	f _x x _i				11/2	
		3 - 5	;	4	5	20	1				
		5 - 7		6	10	60					
		7-9		8	10	80					
		9 – 11	1	10	7	70					
		11 – 1		12	8	96					
		Total			40	326	1				
		L			<u> </u>	<u>.</u>					
		_ >	$\sum f_i x_i$	326	0.15						
		$\mathbf{X} = -$	$\sum f_i$	40	= 8.15					1/2	


					OR						
	Find the mode	of the f	followir	ng data:	0						
	Class:	0-20	20-40	40-60	60-80	80-100	110-120	120-140			
	Frequency:	6	8	10	12	6	5	3			
	Ans: Modal class : 60 – 80										
	Mode =	$= \ell + \frac{1}{2f}$	$\frac{\mathbf{f}_1 - \mathbf{f}_0}{\mathbf{f}_1 - \mathbf{f}_0} - \mathbf{f}_0$	$\overline{\mathbf{f}_2} \times \mathbf{h} =$	$60 + \frac{1}{24}$	12 - 10 -10 - 6	×20			1	
	=	= 60 + 5	5 = 65							1/2	
25.	Find the sum o 1, 4, 7, 10,	f first 2	0 terms	s of the	followir	ng AP:					
	Ans: $S_{20} = \frac{2}{2}$	$\frac{0}{2}$ [2×1	$+19 \times 3$]						$1\frac{1}{2}$	
	=]	0×59	= 590							1/2	
26.	The perimeter of area of the sect		ctor of a	i circle o	of radius	s 5.2 cm	is 16.4 cn	n. Find the			
	Ans: 2×5.2-	$+\frac{2\pi(5.2)}{360}$	$\frac{2)\theta}{2} = 10$	$6.4 \Rightarrow \theta$	$=\frac{360}{2\pi\times 5}$	< <u>6</u> 5.2				1	
	Area of	sector	$=\frac{\pi\times(1)}{36}$	$\frac{5.2)^2}{50^\circ} \times \frac{1}{50^\circ}$	$\frac{360\times6}{2\pi\times5.2}$	=15.6 c	cm^2			1	
				SEC	TION -	- C					
	Question num	bers 27	7 to 34	carry 3	marks	each.					
27.	A cone of base through the min volume of the t	d-point	of its h			-		0 1			
	Ans:									cor. fig 1/2	
	A	L N	↑	ΔΑ	.BC ~ ∆	ADE, $\frac{1}{2}$	$\frac{h}{2h} = \frac{BC}{4}$				
		\backslash			BC = 2	cm				1	
	B	C	h	Ra	tio of v	olumes o	of two par	ts			
			▼ Ţ		1	$\pi \times 2^2 \times$	h				
			h h	= -	3		$\frac{h}{2\times 4)\times h}$			1	
		<u>4 cm</u> -	≫E ♥								
				4	20 /		(accept 7 :			1/2	
28.	In a triangle, if the other two s is a right angle	ides, th			-		-				
									L		

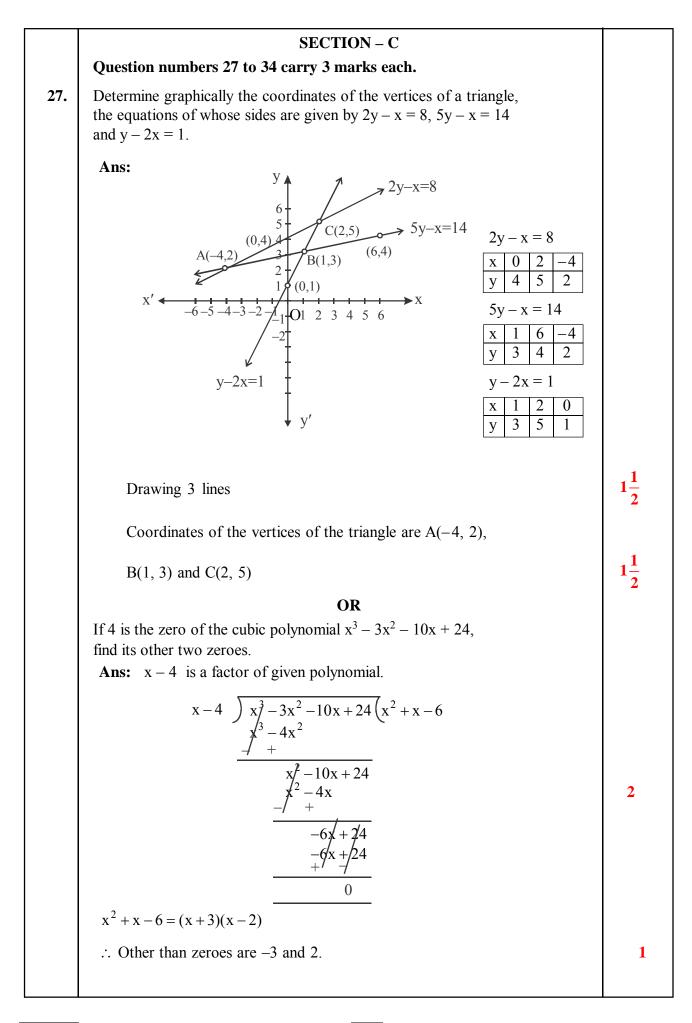
	Ans: For correct given, To prove, construction and figure.	$1\frac{1}{2}$ $1\frac{1}{2}$
	For correct proof.	$1\frac{1}{2}$
29.	Find the area of triangle PQR formed by the points $P(-5, 7)$, $Q(-4, -5)$ and $R(4, 5)$.	
	Ans: $\operatorname{ar}(\operatorname{PQR}) = \frac{1}{2} \left[-5(-5-5) - 4(5-7) + 4(7+5) \right] \operatorname{sq. units}$	2
	$=\frac{1}{2}[50+8+48]$ sq. units	
	= 53 sq. units	1
	OR If the point C(-1, 2) divides internally the line segment joining A(2, 5) and B(x, y) in the ratio $3:4$, find the coordinates of B.	
	Ans: Coordinates of C arc $\left(\frac{3x+8}{7}, \frac{3y+20}{7}\right) = (-1, 2)$	$1\frac{1}{2}$
	$\Rightarrow x = -5, y = -2$ $A \bullet \qquad \bullet B$ $(2, 5) (-1, 2) (x, y)$	1
30.	$\Rightarrow x = -5, y = -2$ $\therefore \text{ Coordinates of B are } (-5, -2)$ Find the quadratic polynomial whose zeroes are reciprocal of the zeroes of the polynomial f(x) = ax ² + bx + c, a ≠ 0, c ≠ 0.	1/2
	Ans: $f(x) = ax^2 + bx + c$	
	$\alpha + \beta = -\frac{b}{a}, \ \alpha\beta = \frac{c}{a}$	1/2
	New sum of zeroes $=$ $\frac{1}{\alpha} + \frac{1}{\beta} = -\frac{b}{c}$	1
	New product of zeroes $= \frac{1}{\alpha} \times \frac{1}{\beta} = \frac{a}{c}$	1
	$\therefore \text{ Required quardratic polynomial} = x^2 + \frac{b}{c}x + \frac{a}{c} \text{ or } (cx^2 + bx + a)$	1/2
	OR	
	Divide the polynomial $f(x) = 3x^2 - x^3 - 3x + 5$ by the polynomial $g(x) = x - 1 - x^2$ and verify the division algorithm.	
	Ans: $-x^2 + x - 1$ $-x^3 + 3x^2 - 3x + 5$ $x - 2$ $-x^3 + x^2 - x$	2
	+ $ +$	
	$2x^2 - 2x + 5$ $2x^2 - 2x + 2$	
	3	

32.	A train covers a distance of 480 km at a uniform speed. If the speed had been 8 km/h less, then it would have taken 3 hours more to cover the same distance. Find the original speed of the train.	
	Ans: Let the speed of train be x km/hr	
	$\therefore \frac{480}{x-8} - \frac{480}{x} = 3$	1
	$\Rightarrow x^2 - 8x - 1280 = 0$	1
	(x - 40) (x + 32) = 0	
	x = 40, -32 (Rejected)	1
	\therefore Speed of train = 40 km/hr	
33.	Prove that the parallelogram circumscribing a circle is a rhombus.	
	Ans: $AP = AS$ BP = BQ DR = DS $CR = CQ$ $A \xrightarrow{P} B$ $S \xrightarrow{Q} Q$ $D \xrightarrow{R} C$	1
	Adding, we get $(AP + BP) + (DR + CR) + (AS + DS) + (BQ + CQ)$ $\Rightarrow AB + CD = BC + AD$ Since ABCD is a gm $\therefore 2AB = 2 BC$	1
	$\Rightarrow AB = BC$	1
34.	Prove that : $2(\sin^6\theta + \cos^6\theta) - 3(\sin^4\theta + \cos^4\theta) + 1 = 0$	
	Ans: $2(\sin^6\theta + \cos^6\theta) - 3(\sin^4\theta + \cos^4\theta) + 1$	
	$= 2\left[\left(\sin^2\theta\right)^3 + \left(\cos^2\theta\right)^3\right] - 3\left(\sin^4\theta + \cos^4\theta\right) + 1$	1
	$= 2\left[\left(\sin^2\theta + \cos^2\theta\right)\left(\sin^4\theta + \cos^4\theta - \sin^2\theta\cos^2\theta\right)\right] - 3\left(\sin^4\theta + \cos^4\theta\right) + 1$	1
	$= -\left(\sin^4\theta + \cos^4\theta\right) - 2\sin^2\theta\cos^2\theta + 1$	
	$= -\left[\left(\sin^2\theta + \cos^2\theta\right)^2 - 2\sin^2\theta\cos^2\theta\right] - 2\sin^2\theta\cos^2\theta + 1$	1
	= -1 + 1 = 0	
	SECTION – D Question numbers 35 to 40 carry 4 marks each.	
35.	The following table gives production yield per hectare (in quintals)	
55.	of wheat of 100 farms of a village:	
	Production yield/hect. 40-45 45-50 50-55 55-60 60-65 65-70	
	No. of farms 4 6 16 20 30 24	
	Change the distribution to 'a more than' type distribution and draw its ogive.	

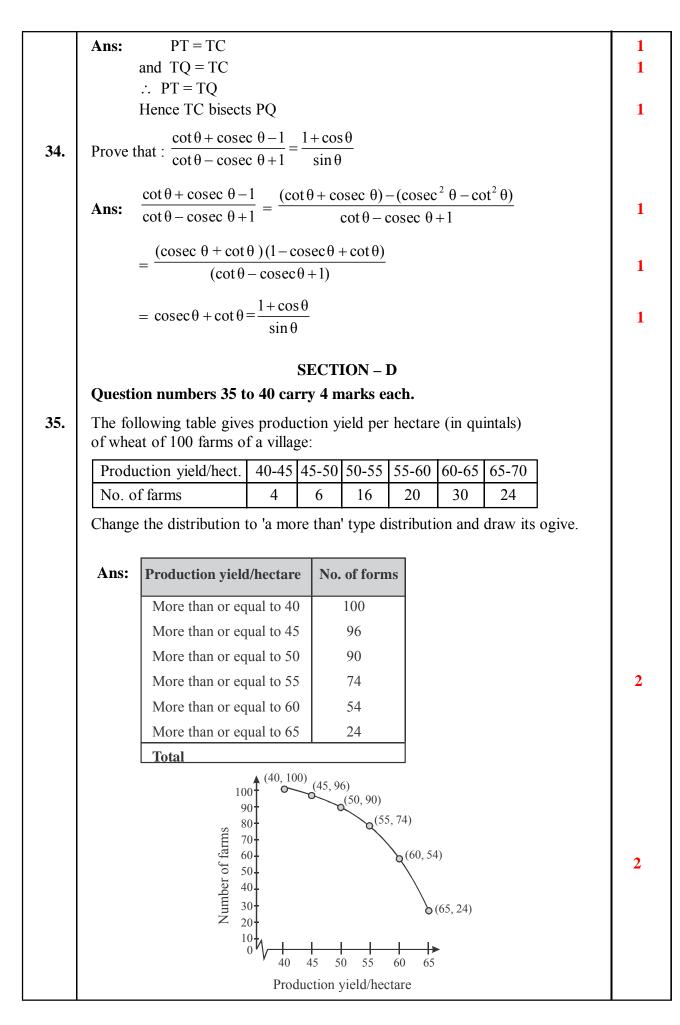



	OR	
	Prove that one of every three consecutive positive integers is divisible by 3.	
	Ans: Let n be any positive integer. Divide it by 3.	1
	\therefore n = 3q + r, r = 0, 1, 2	1
	Case-1 : $n = 3q$ (divisible by 3)	1.0
	n+1 = 3q + 1, n + 2 = 3q + 2	1 for
	Case-2 : $n = 3q+1 \implies n+1 = 3q + 2$, $n+2 = 3q+3$ (divisible by 3)	each
	Case-3 : $n = 3q+2 \Rightarrow n+1 = 3q+3$ (divisible by 3), $n + 2 = 3q+4$	case = 3
38.	The sum of four consecutive numbers in AP is 32 and the ratio of product of the first and last terms to the product of two middle terms is 7:15. Find the numbers.	
	Ans: Let four consecutive number be $a - 3d$, $a - d$, $a + d$, $a + 3d$	1/2
	Sum = 32 \therefore 4a = 32 \Rightarrow a = 8	1/2
	$\frac{(a-3d)(a+3d)}{(a-d)(a+d)} = \frac{7}{15} \Longrightarrow 15(64-9d^2) = 7(64-d^2)$	1
	$\therefore d^2 = 4 \implies d = \pm 2$	1
	Four numbers are 2, 6, 10, 14.	1
	OR	
	Solve: $1+4+7+10++x=287$	
	Ans: $x = a_n = 1 + 3n - 3 = 3n - 2$	1
	$S_n = 287 \Longrightarrow \frac{n}{2} [1 + 3n - 2] = 287$	1
	$\therefore 3n^2 - n - 574 = 0$	1/2
	$(n-14)(3n+41) = 0 \Longrightarrow n = 14$	1
	$\therefore x = 3n - 2 = 40$	1/2
39.	A bucket in the form of a frustum of a cone of height 16 cm with radii of its lower and upper circular ends as 8 cm and 20 cm respectively. Find cost of milk which can completely fill the bucket, at the rate of \gtrless 40 per litre. (Use $\pi = 3.14$)	
	Ans: Capacity of bucket = $\frac{1}{3}\pi h \left(r_1^2 + r_2^2 + r_1r_2\right)$	1
	$= \frac{1}{3} \times 3.14 \times 16 \left(8^2 + 20^2 + 8 \times 20 \right) \text{cm}^3$	$1\frac{1}{2}$
	$= 10449.92 \text{ cm}^3$	
	$= 10.45 \ l \ (approx.)$	1/2
	Cost of milk = $\mathbf{\overline{\xi}} 40 \times 10.45 = \mathbf{\overline{\xi}} 418$	1

40.	Construct a triangle with sides 4 cm, 5 cm and 6 cm. Then construct another triangle whose sides are $\frac{2}{3}$ times the corresponding sides of the first triangle.	
	Ans: Construction of ∆ABC with given dimensionsConstruction of similar triangle	1 3


	QUESTION PAPER CODE 30/1/3 EXPECTED ANSWER/VALUE POINTS SECTION – A											
	Q. NO. 1 to 10 are multiple choice type question of 1 mark each. Select the correct option.											
Q.No.				2	Marks							
1.	The value of k for whi 2x + ky = 3 has no solu	•	uations $x + y - 4 = 0$) and								
	(a) –2 Ans: (d) 2	(b) ≠2	(c) 3	(d) 2	1							
2.	The HCF and the LCM	A of 12, 21, 15 resp	ectively are									
	(a) 3,140 Ans: (c) 3,420	(b) 12,420	(c) 3,420	(d) 420,3	1							
3.	The value of x for whi		(3x+2) are the three	ee								
	consecutive terms of a (a) 6	in AP, 1s (b) –6	(c) 18	(d) -18								
	Ans: (a) 6		(c) 10	(u) 10	1							
4.	The first term of an Al	D is n and the comm	on difference is a th	pen its 10^{th} term is								
٦.	(a) $q + 9p$	(b) $p - 9q$	(c) $p + 9q$	(d) $2p + 9q$								
	Ans: (c) $p + 9q$				1							
5.	If one of the zeroes of of k is	the quadratic polyr	nomial $x^2 + 3x + k$ is	2, then the value								
	(a) 10	(b) –10	(c) -7	(d) −2								
	Ans: (b) -10				1							
6.	The total number of fa	-										
	(a) 1 Ans: (a) 2	(b) 0	(c) 2	(d) 3	1							
7.	Ans: (c) 2 The quadratic polynom	nial the sum of who	se zeroes is -5 and $\frac{1}{2}$	their product is	1							
7•	6, is	inal, the sum of wh		then product is								
	(a) $x^2 + 5x + 6$ Ans: (a) $x^2 + 5x + 6$	(b) $x^2 - 5x + 6$	(c) $x^2 - 5x - 6$	(d) $-x^2 + 5x + 6$	1							
8.	The value of p, for wh	ich the points $A(3,$	1), B(5, p) and C(7, -	-5) are collinear, is								
	(a) −2 Ans: (a) −2	(b) 2	(c) -1	(d) 1	1							
9.	The distance between	the points (a $\cos \theta$	+ b sin θ , 0) and (0,	$a \sin \theta - b \cos \theta$, is								
		(b) $a^2 - b^2$	(c) $\sqrt{a^2+b^2}$	(d) $\sqrt{a^2 - b^2}$								
	Ans: (c) $\sqrt{a^2 + b^2}$				1							
10.	If the point $P(k, 0)$ div $B(-7, 4)$ in the ratio 1	-		A(2, -2) and								
	(a) 1 Ans: (d) –1	(b) 2	(c) -2	(d) -1	1							

	OR	
18.	If the probability of winning a game is 0.07, what is the probability of losing it? Ans: P (losing) = $1 - 0.07 = 0.93$ The ratio of the length of a vertical rod and the length of its shadow is $1:\sqrt{3}$. Find the angle of elevation of the sun at that moment?	1
	Ans: $\tan \theta = \frac{1}{\sqrt{3}} \Longrightarrow \theta = 30^{\circ}$	1/2+1/2
19.	Two cones have their heights in the ratio 1:3 and radii in the ratio 3:1. What is the ratio of their volumes?	
	Ans: $\frac{r_1}{r_2} = \frac{3}{1}, \frac{h_1}{h_2} = \frac{1}{3}$	1/2
	$\therefore \text{ Ratio of volumes} = \frac{\frac{1}{3}\pi r_1^2 h_1}{\frac{1}{3}\pi r_2^2 h_2} = 3:1$	1/2
20.	A pair of dice is thrown once. What is the probabiliy of getting a doublet?	
	Ans: Number of favourable outcomes are 6	
	i.e. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)	1/2
	$\therefore P (doublet) = \frac{6}{36} \text{ or } \frac{1}{6}$	1/2
	SECTION – B	
	Q. Nos. 21 to 26 carry 2 marks each.	
21.	In Fig. 2 DE AC and DC AP. Prove that $\frac{BE}{EC} = \frac{BC}{CP}$.	
	B E C P Fig 2	
	Ans: In $\triangle ABC$, DE AC, $\therefore \frac{BD}{DA} = \frac{BE}{EC}$ (i)	1
	In $\triangle ABP$, DC AP, $\therefore \frac{BD}{DA} = \frac{BC}{CP}$ (ii)	1/2
	From (i) & (ii), $\frac{BE}{EC} = \frac{BC}{CP}$	1/2



Ans:	Classes	X _i	f _i	$\mathbf{f}_{\mathbf{x}}\mathbf{X}_{\mathbf{i}}$	4		
	3 – 5	4	5	20			
	5 – 7	6	10	60			
	7 – 9	8	10	80			
	9 – 11	10	7	70			
	11 – 13	12	8	96	-		
	Total		40	326			
	$\overline{x} = \frac{\sum f_i}{\sum f}$	$\frac{x_i}{x_i} = \frac{326}{40}$		OR			
	mode of th		-				-
Class:	0-2			60-80		<u>110-120</u> 5) 12
Frequen	-	_	10	12	6	3	
	Modal class				• 10		
ľ	Mode = ℓ +	$\frac{\mathbf{f}_1 - \mathbf{f}_0}{2\mathbf{f}_1 - \mathbf{f}_0}$	$\frac{0}{-f_2} \times h = 0$	$60 + \frac{1}{24}$	$\frac{2-10}{-10-6}$	<20	
	= 60 -	+ 5 = 65					
	ute hand of k described			-			; fac
Ans: A	Angle swept	in 35 m	$\sin = \frac{360}{60}$	$\times 35 = 2$	10°		
I	Area of face	of cloc	$k = \frac{22}{7} \times 1$	2×12×	$\frac{210}{360} = 2$	$54\mathrm{cm}^2$	
I	Accept: Are	$a = \frac{22}{7}$	$(12)^2 \times \frac{35}{60}$	$\frac{5}{0} = 264$	cm ²		
	of the first d the AP.	7 terms	of an AP	is 63 ar	d that of	its next	7 te
	$S_7 = 63 \Rightarrow \frac{1}{2}$	-					
	$\therefore a + 3d =$						
S	$S_{14} - S_7 = \frac{1}{2}$	$\frac{4}{2}(2a+1)$	3d) - 63 =	=161			
	$\rightarrow 2a + 13d$	= 32	(ii)				
S	Solving (i) a \therefore AP is 3, \therefore	nd (ii), a	a = 3, d = 2	2			

28. Find the area of triangle PQR formed by the points P(-5, 7), Q(-4, -5) and R(4, 5). Ans: $ar(PQR) = \frac{1}{2} \left[-5(-5-5) - 4(5-7) + 4(7+5) \right]$ sq. units 2 $=\frac{1}{2}[50+8+48]$ sq. units = 53 sq. units 1 OR If the point C(-1, 2) divides internally the line segment joining A(2, 5)and B(x, y) in the ratio 3 : 4, find the coordinates of B. Ans: Coordinates of C arc $\left(\frac{3x+8}{7}, \frac{3y+20}{7}\right) = (-1, 2)$ $\Rightarrow x = -5, y = -2$ x = -5, y = -2 $1\frac{1}{2}$ 1 (x, y) \therefore Coordinates of B are (-5, -2) 1/2Find the quadratic polynomial whose zeroes are reciprocal of the zeroes 29. of the polynomial $f(x) = ax^2 + bx + c$, $a \neq 0$, $c \neq 0$. **Ans:** $f(x) = ax^2 + bx + c$ $\alpha + \beta = -\frac{b}{a}, \ \alpha\beta = \frac{c}{a}$ 1/2 New sum of zeroes = $\frac{1}{\alpha} + \frac{1}{\beta} = -\frac{b}{c}$ 1 New product of zeroes = $\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{a}{c}$ 1 \therefore Required quardratic polynomial = $x^2 + \frac{b}{c}x + \frac{a}{c}$ or $(cx^2 + bx + a)$ 1/2 OR Divide the polynomial $f(x) = 3x^2 - x^3 - 3x + 5$ by the polynomial $g(x) = x - 1 - x^2$ and verify the division algorithm. Ans: $-x^2 + x - 1$ $-x^3 + 3x^2 - 3x + 5$ (x - 2)2 $\frac{-x^{3} + x^{2} - x}{+ - +}$ $2x^2 - 2x + 2$ Divisor \times Ouotient + Remainder $= (-x^{2} + x - 1)(x - 2) + 3$ $= -x^{3} + 3x^{2} - 3x + 5 =$ Dividend 1

		·
30.	In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then prove that the angle opposite to the first side is a right angle.	
	Ans: For correct given, To prove, construction and figure.	$1\frac{1}{2}$
	For correct proof.	$1\frac{1}{2}$ $1\frac{1}{2}$
31.	A cone of base radius 4 cm is divided into two parts by drawing a plane through the mid-point of its height and parallel to its base. Compare the volume of the two parts.	
	Ans:	cor. fig 1/2
	$A \qquad \Delta ABC \sim \Delta ADE, \ \frac{h}{2h} = \frac{BC}{4}$	
	\square \therefore BC = 2 cm	1
	$\begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
	$\int h = \frac{-\pi \times 2^2 \times h}{3}$	1
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \end{array} \\ \end{array} \\ \end{array} } \begin{array} \end{array} \\ \end{array} } \\ \end{array}	1
	$=\frac{4}{28}=\frac{1}{7}$ or 1 : 7 (accept 7 : 1 also)	1/2
32.	A man can row a boat downstream 20 km in 2 hours and upstream 4 km in 2 hours. Find his speed of rowing in still water. Also find the speed of the stream.	
	Ans: Let the speed of rowing in still water x km/hr and speed of stream be y km/hr.	
	$\frac{20}{x+y} = 2 \implies x+y = 10 (i)$	1
	$\frac{4}{x-y} = 2 \implies x-y = 2 (ii)$	1/2
	Solving (i) & (ii), $x = 6$, $y = 4$	1
	$\therefore \text{ Speed of rowing in still water} = 6 \text{ km/hr}$ and speed of stream = 4 km/hr	1/2
33.	In given Fig. 5, two circles touch each other at the point C. Prove that the common tangent to the circles at C, bisects the common tangent at P and Q.	
	$\begin{array}{c} & P & T & Q \\ \hline & A \bullet & Q & \bullet B \\ \hline & Figure 5 \end{array}$	

34

OR The median of the following data is 525. Find the values of x and y, if total frequency is 100:														
Class : 001-00 00-2001 00-2001 00-2001				300-400	400-500	500-600	600-700	700-800	800-900	900-1000				
Frequency:	2	5	x	12	17	20	y	9	7	4	1			
Ans:			<u> </u>						<u> </u>	<u></u>]			
								_						
(Classes	;]	Frequer	ncy	Cumul freque								
0-100				2		2								
100-20 200-30				5		7 7+:	χ.							
300-40				x 12		19 +								
400-50				12		36 +								
500-60	0			20		56 + x			→ Median class					
600-70				У		-		56 + x + y						
700-80		9 7			65 + x + y 72 + x + y									
900-10				4		72 + x 76 + x	-							
Total				100				1	-					
76 + x - 500 - 6 Median $\Rightarrow 525$ Solving	500 is $h = \ell$ = 500 g we g	the n $\frac{\frac{n}{2} - c}{f}$ $\frac{1}{2} + \frac{50}{f}$ $\frac{1}{2} + \frac{50}{f}$ get, x	nedian cf -36 $ 20$	n class)						1/2		
From (1/2				
A bucket in the form of a frustum of a cone of height 30 cm with radii of its lower and upper ends as 10 cm and 20 cm respectively. Find the capacity of the bucket. Also find the total cost of milk that can completely fill the bucket at the rate of \gtrless 40 per litre. $\left(\text{Use } \pi = \frac{22}{7} \right)$ Ans: Capacity of bucket $= \frac{1}{3} \pi h \left(r_1^2 + r_2^2 + r_1 r_2 \right)$														

	$= \frac{1}{3} \times \frac{22}{7} \times 30 (10^2 + 20^2 + 10 \times 20) \text{ cm}^3$	1
	$= 22000 \text{ cm}^3$	$1\frac{1}{2}$
	= 221	1/2
	Cost of milk = ₹ 40 × 22 = ₹ 880	1
37.	Show that the square of any positive integer cannot be of form $(5q + 2)$ or $(5q + 3)$ for any integer q.	
	Ans: Let a be any positive integer. Take $b = 5$ as the divisor.	
	\therefore a = 5m + r, r = 0,1,2,3,4	1
	Case-1 : $a = 5m \Rightarrow a^2 = 25m^2 = 5(5m^2) = 5q$	1/2
	Case-2 : $a = 5m+1 \implies a^2 = 5(5m^2 + 2m) + 1 = 5q + 1$	for
	Case-3 : $a = 5m+2 \implies a^2 = 5(5m^2 + 4m) + 4 = 5q + 4$	each
	Case-4 : $a = 5m+3 \implies a^2 = 5(5m^2 + 6m + 1) + 4 = 5q + 4$	case
	Case-5 : $a = 5m+4 \implies a^2 = 5(5m^2 + 8m + 3) + 1 = 5q + 1$	$=2\frac{1}{2}$
	Hence square of any positive integer cannot be of the form $(5q + 2)$ or $(5q + 3)$ for any integer q.	2 1/2
	OR	
	Prove that one of every three consecutive positive integers is divisible by 3. Ans: Let n be any positive integer. Divide it by 3.	
	$\therefore n = 3q + r, r = 0,1,2$	1
	Case-1 : $n = 3q$ (divisible by 3)	1.0
	n+1 = 3q + 1, n + 2 = 3q + 2 Case-2 : $n = 3q+1 \Rightarrow n+1 = 3q + 2, n+2 = 3q+3$ (divisible by 3)	1 for each
	Case-3 : $n = 3q+2 \Rightarrow n+1 = 3q+3$ (divisible by 3), $n+2 = 3q+4$	case = 3
38.	The sum of four consecutive numbers in AP is 32 and the ratio of product of the first and last terms to the product of two middle terms is 7:15. Find the numbers.	
	Ans: Let four consecutive number be $a - 3d$, $a - d$, $a + d$, $a + 3d$	1/2
	Sum = 32 \therefore 4a = 32 \Rightarrow a = 8	1/2
	$\frac{(a-3d)(a+3d)}{(a-d)(a+d)} = \frac{7}{15} \Longrightarrow 15(64-9d^2) = 7(64-d^2)$	1
	$\therefore d^2 = 4 \implies d = \pm 2$	1
	Four numbers are 2,6,10,14.	1

	OR	
	Solve: $1 + 4 + 7 + 10 + + x = 287$	
	Ans: $x = a_n = 1 + 3n - 3 = 3n - 2$	1
	$S_n = 287 \Longrightarrow \frac{n}{2} [1 + 3n - 2] = 287$	1
	$\therefore 3n^2 - n - 574 = 0$	1/2
	$(n-14)(3n+41) = 0 \Longrightarrow n = 14$	1
	$\therefore x = 3n - 2 = 40$	1/2
39.	Draw a $\triangle ABC$ with BC = 7 cm, $\angle B = 45^{\circ}$ and $\angle A = 105^{\circ}$. Then construct	
	another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of $\triangle ABC$.	
	Ans: Construction \triangle ABC with given measurement.	1
40.	Construction of similar triangle From the top of a 7 m high building the angle of elevation of the top of a	3
40.	tower is 60° and the angle of depression of its foot is 45°. Determine the	
	height of the tower.	
	Ans: From the figure, $\frac{h}{x}$ = tan 60°	cor. fig 1
	$\Rightarrow h = \sqrt{3} \dots (i)$	1
	and $\frac{7}{x} = \tan 45^{\circ}$	
	\Rightarrow x = 7	1
	From (i), $h = 7\sqrt{3}$	
	\therefore Height of tower = $(7\sqrt{3} + 7)m$ or $7(\sqrt{3} + 1)m$	1