Strictly Confidential - (For Internal and Restricted Use Only) Secondary School Examination-2020 Marking Scheme - Mathematics 30/5/1, 30/5/2, 30/5/3

General instructions

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. **Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.**
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them. In class-X, while evaluating two competency based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, marks should be awarded.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer 'X"be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 6. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks ______(example 0-100 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
- **10.** Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
- 11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on a reply.
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying.
 - Wrong transfer of marks from the answer book to online award list.
 - Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
 - Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
- **13.** Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- **15.** Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- **16.** The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

.30/5/1.

1

		QUESTION PAPE	R CODE 30/5/1						
	EX	PECTED ANSWEI	R/VALUE POINTS	5					
	Question numbers 1	SECTIO to 20 are of 1 mar	N – A k oach						
	Question numbers 1 to 20 are multiple choice questions.								
	You have to select th	e correct choice :	loice questions.						
Q.No.					Marks				
1.	On dividing a polynom to be x and 3 respect	mial p(x) by x ² – 4, c ively. The polynomia	quotient and remain l p(x) is	der are found					
	(a) $3x^2 + x - 12$	(b) $x^3 - 4x + 3$	(c) $x^2 + 3x - 4$	(d) $x^3 - 4x - 3$					
	Ans: (b) $x^3 - 4x + 3$				1				
2.	In Figure 1, ABC is a	n isosceles triangle,	right-angled at C.	Therefore					
	(a) $AB^2 = 2AC^2$	B							
	(b) BC2 = 2AB2								
	(c) $AC^2 = 2AB^2$	ŧ 🔪							
	(d) $AB^2 = 4AC^2$								
	Ans: (a) $AB^2 = 2AC$	Figure 1	A		1				
3.	The point on the x-ax	tis which is equidistant	nt from $(-4, 0)$ and	(10, 0) is					
	(a) $(7, 0)$	(b) $(5, 0)$	$(\mathbf{c})(0,0)$	$(\mathbf{d})(3,0)$					
	Ans: (d) (3, 0)				1				
		OR							
	The centre of a circle	whose end points of	f a diameter are (-6)	(3) and (6, 4) is					
	(a) (8, −1)	(b) (4, 7)	(c) $\left(0,\frac{7}{2}\right)$	$(\mathbf{d})\left(4,\frac{7}{2}\right)$					
	Ans: (c) $\left(0, \frac{7}{2}\right)$				1				
4.	The value(s) of k for	which the quadratic	equation $2x^2 + kx + kx$	2 = 0 has					
	equal roots, is								
	(a) 4	(b) ± 4	(c) -4	(d) 0					
	Ans: (b) ± 4				1				
5.	Which of the following	ng is <i>not</i> an A.P.?	_						
	(a) −1.2, 0.8, 2.8, …		(b) 3, $3 + \sqrt{2}$, $3 + \sqrt{2}$	$-2\sqrt{2}$, 3 + 3 $\sqrt{2}$,					
	(c) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}, \dots$		(d) $\frac{-1}{5}, \frac{-2}{5}, \frac{-3}{5}, \cdots$						
	Ans: (c) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}$	-,			1				

6.	The pair of linear equations		
	$\frac{3x}{3} + \frac{5y}{3} = 7$ and $9x + 10y = 14$ is		
	2 3 and $3x + 10y + 10$	(h) in consistant	
	(a) consistent with one solution	(b) inconsistent (d) consistent with many colut	ong
	Ans: (b) inconsistent	(u) consistent with many solution	1
-			1
7.	In Figure 2, PQ is tangent to the circle If $\angle AOB = 100^\circ$, then $\angle ABP$ is equa	l to	
	(a) 50°		
	(b) 40°	A 100°	
	(c) 60°	Q	
	(d) 80° Ans: (a) 50°	B B	1
8	The radius of a sphere (in cm) whose	$r_{\text{Figure 2}}$	•
0.	(b) $2\sqrt{2}$	(a) $2^{2/3}$ (d) $2^{1/3}$	
	(a) 5 (b) $3\sqrt{3}$	(c) 3^{25} (u) 3^{25}	1
0	Ans: (c) 5 The distance between the points (m	n and (m, n) is	1
9.	The distance between the points (iii, $-$		
	(a) $\sqrt{m^2 + n^2}$	(\mathbf{b}) m + n	
	(c) $2\sqrt{m^2 + n^2}$	(d) $\sqrt{2m^2 + 2n^2}$	
	Ans: (c) $2\sqrt{m^2 + n^2}$		1
10.	In Figure 3, from an external point P, circle of radius 4 cm with centre O. If	two tangents PQ and PR are drawn to $E \angle QPR = 90^\circ$, then length of PQ is	a
	(a) 3 cm	Q	
	(b) 4 cm	Est P	
	(c) 2 cm	(o'the R	
	(d) $2\sqrt{2}$ cm		
	Ans: (b) 4 cm	Figure 3	1
	Fill in the blanks in question numb	ers 11 to 15.	
11.	The probability of an event that is sur Ans: 1	e to happen, is	1
12.	Simplest form of $\frac{1 + \tan^2 A}{1 + \cot^2 A}$ is		
	Ans: $\tan^2 A$		1
13.	AOBC is a rectangle whose three vert The length of its diagonal is	tices are $A(0, -3)$, $O(0, 0)$ and $B(4, 0)$.	
	Ans: 5 units		1

14.In the formula
$$\overline{x} = a + \left(\frac{\sum f_{a} I_{a}}{\sum f_{a}}\right) \times h, u_{i} =$$
114.In the formula $\overline{x} = a + \left(\frac{\sum f_{a} I_{a}}{\sum f_{a}}\right) \times h, u_{i} =$ 115.Ans: $\frac{x_{i} - a}{h}$ 116.Find the sum of the first 100 natural numbers.1Ans: $\frac{100}{2} [2 + 99] = 5050$ 1/2+1/217.In Figure 4, the angle of elevation of the top of a tow of from a point C on the ground, which is 30 m away from the foot of the tower, is 30°. Find the height of tower.1/218.AB = $\frac{AB}{\sqrt{3}} = \frac{30}{\sqrt{3}} m \text{ or } 10\sqrt{3} m$ $a_{B} = \frac{10}{30} = \frac{10}{\sqrt{3}} = 12+1/2$ 18.The LCM of two numbers is 182 and their HCF is 13. If one of the numbers is 26, find the other.1/2+1/219.Form a quadratic polynomial, the sum and product of whose zeros are (-3) and 2 respectively.
Ams: $x^{2} + 3x + 2$ 110.Can (x² - 1) be a remainder while dividing $x^{4} - 3x^{2} + 5x - 9$ by $(x^{2} + 3)$?
Justify your answer with reasons.
Ans: No, degree of remainder < degree of divisor120.Evaluate: $\frac{2 \tan 45^{\circ} \times \cos 60^{\circ}}{\sin 30^{\circ}}$ 121.In the given Figure 5, DE || AC and DF || AE.
Prove that $\frac{BF}{BF} = \frac{BE}{EC}$.1/2+1/2

26.	2 cubes, each of volume 125 cm^3 , are joined end to end. Find the surface area of the resulting cuboid.	
	Ans: Side of cube = $(125)^{1/3} = 5$ cm	1/2
	\therefore Dimensions of cuboid : 10, 5, 5	1/2
	$S.A = 2(50 + 25 + 50) = 250 \text{ cm}^2$	1
	SECTION – C	
	Question numbers 27 to 34 carry 3 marks each.	
	1	
27.	A fraction becomes $\frac{1}{3}$ when 1 is subtracted from the numerator and it	
	becomes $\frac{1}{4}$ when 8 is added to its denominator. Find the fraction.	
	Ans: Let the fraction be $\frac{x}{y}$	1/2
	$\therefore \frac{x-1}{y} = \frac{1}{3}, \frac{x}{y+8} = \frac{1}{4}$	1/2+1/2
	\Rightarrow 3x - y = 3, 4x - y = 8	1/2
	Solving to get $x = 5$, $y = 12$: Fraction is $\frac{5}{12}$	1
	OR	
	The present age of a father is three years more than three times the age of his son. Three years hence the father's age will be 10 years more than twice the age of the son. Determine their present ages.	
	Ans: Let the present age of son be x years \therefore Eather's present age = $(3x + 3)$ years	1
	3 years hence Son's age = $(x + 3)$ years	L
	and father's age = $(3x + 6)$ years	1/2
	$\therefore \qquad 3x+6=2(x+3)+10$	1
	$\Rightarrow x = 10 \therefore \text{ Son's age} = 10 \text{ years,}$ Father's age = 33 years	1/2
28.	Use Euclid Division Lemma to show that the square of any positive integer	
	is either of the form $3q$ or $3q + 1$ for some integer q. Ans: Any positive integer 'n' can be of the form $3m$, $3m + 1$, $3m + 2$ (for some integer m)	1
	(101 some integer in) $\cdot n^2 = (3m)^2 = 9m^2 = 3(3m^2) = 3a$)
	or $n^2 = (3m + 1)^2 = 9m^2 + 6m + 1 = 3(3m^2 + 2m) + 1 = 3a + 1$	1
	or $n^2 = (3m + 2)^2 = 0m^2 + 12m + 3 + 1$	$\left\{ 1\frac{1}{2}\right\}$
	$= 3(3m^2 + 4m + 1) + 1 = 3a + 1$	
	Hence square of any positive integer is either of the form	J
	3q or 3q + 1 for some integer q.	1/2

20	Find the ratio in which the varie divides the line segment joining the	
29.	points $(6, -4)$ and $(-2, -7)$. Also find the point of intersection	
	Ans : $V = 1$ Let the point $P(0, y)$ on y-axis	
	At A^{\bullet} B divides the line segment AB in K · 1	1
	(6, -4) $(0, y)$ $(-2, -7)$	•
	$\therefore 0 = \frac{-2K+6}{K+1} \implies K = 3 \therefore \text{ Ratio is } 3:1$	1
	Also, $y = \frac{3(-7) + 1(-4)}{3+1} = \frac{-25}{4}$. Point of intersection is $\left(0, \frac{-25}{4}\right)$	1
	OR	
	Show that the points $(7, 10)$, $(-2, 5)$ and $(3, -4)$ are vertices of an	
	isosceles right triangle.	
	Ans: Let the points be A(7, 10), B(-2, 5) and C(3, -4)	
	AB = $\sqrt{(-2-7)^2 + (5-10)^2} = \sqrt{106}$	1
	BC = $\sqrt{(3+2)^2 + (-4-5)^2} = \sqrt{106}$	1/2
	AC = $\sqrt{(3-7)^2 + (-4-10)^2} = \sqrt{212}$	1/2
	$AB = BC \text{ and } AC^2 = AB^2 + BC^2$	
	Hence ABC is isosceles right triangle.	1
30.	Prove that: $\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$	
	Ans: LHS = $\sqrt{\frac{1+\sin A}{1-\sin A}} \cdot \frac{1+\sin A}{1+\sin A}$	1
	$= \sqrt{\frac{(1+\sin A)^2}{\cos^2 A}} = \frac{1+\sin A}{\cos A}$	$1 + \frac{1}{2}$
	$= \sec \Delta + \tan \Delta$	1/2
31	For an A P it is given that the first term $(a) = 5$ common difference	1/ 2
	(d) = 3 and the n th term $(a) = 50$ Find n and sum of first n terms (S)	
	of the A P	
	Ans: $50 = 5 + (n - 1)3 \implies n = 16$	$1 + \frac{1}{2}$
	16	2
	$S_{16} = \frac{16}{2} [10 + 15 \times 3] = 440$	$1 + \frac{1}{2}$
32.	Construct a $\triangle ABC$ with sides BC = 6 cm, AB = 5 cm and $\angle ABC = 60^{\circ}$.	
	Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding	
	sides of $\triangle ABC$.	_
	Ans: Constructing $\triangle ABC$ with given dimensions	1
	Constructing the similar triangle.	2

	Ans: Let side of square be 'a' cm $\therefore a^2 + a^2 = (6\sqrt{2})^2 \implies a = 6 \text{ cm}$	1				
	$\therefore \text{ Area of shaded region} = \pi r^2 \frac{90}{360} - a^2 = \frac{22}{7} \times \left(6\sqrt{2}\right)^2 \cdot \frac{1}{4} - 36$	$1 + \frac{1}{2}$				
	$=\frac{396-252}{7}=\frac{144}{7}$ cm ² or 20.57 cm ²	1/2				
	SECTION – D					
	Question numbers 35 to 40 carry 4 marks each.					
35.	Obtain other zeroes of the polynomial					
	$P(x) = 2x^4 - x^3 - 11x^2 + 5x + 5$					
	If two of its zeroes are $\sqrt{5}$ and $-\sqrt{5}$.					
	Ans: Since $\sqrt{5}$ and $-\sqrt{5}$ are zeroes of p(x), so $(x - \sqrt{5})$ and $(x + \sqrt{5})$					
	are factors of $p(x)$. Thus $(x^2 - 5)$ is a factor of $p(x)$.	1				
	$(2x^4 - x^3 - 11x^2 + 5x + 5) \div (x^2 - 5) = 2x^2 - x - 1$	$1\frac{1}{2}$				
	$2x^{2} - x - 1 = (2x + 1) (x - 1)$	1				
	\therefore Other zeroes of p(x) are 1, $-\frac{1}{2}$	1/2				
	OR					
	What minimum must be added to $2x^3 - 3x^2 + 6x + 7$ so that the resulting					
	polynomial will be divisible by $x^2 - 4x + 8$? Ans:					
	polynomial will be divisible by $x^2 - 4x + 8$? Ans:					
	polynomial will be divisible by $x^2 - 4x + 8$? Ans: $x^2 - 4x + 8$ 2x + 5 2x + 5 $(x^2 - 4x + 8)$ $(x^2 - 4x + 8)$					
	polynomial will be divisible by $x^2 - 4x + 8$? Ans: $x^2 - 4x + 8 \overline{)2x^3 - 3x^2 + 6x + 7} ($ $2x^3 - 8x^2 + 16x$					
	polynomial will be divisible by $x^2 - 4x + 8$? Ans: $x^2 - 4x + 8 \overline{\smash{\big)}2x^3 - 3x^2 + 6x + 7} \left(-\frac{2x^3 - 8x^2 + 16x}{5x^2 - 10x + 7} \right)$					
	polynomial will be divisible by $x^2 - 4x + 8$? Ans: $x^2 - 4x + 8 \overline{\smash{\big)}2x^3 - 3x^2 + 6x + 7} \left(-\frac{2x^3 - 8x^2 + 16x}{5x^2 - 10x + 7} \right)$	3				
	polynomial will be divisible by $x^2 - 4x + 8$? Ans: $ \frac{2x+5}{x^2 - 4x + 8)2x^3 - 3x^2 + 6x + 7} \left(-\frac{2x^3 - 8x^2 + 16x}{-\frac{2x^3 - 8x^2 + 16x}{-\frac{5x^2 - 10x + 7}{-\frac{5x^2 - 20x + 40}{-\frac{10x - 33}}}} \right) $	3				
	polynomial will be divisible by $x^2 - 4x + 8$? Ans: $ \frac{2x+5}{x^2 - 4x + 8 \sqrt{2x^3 - 3x^2 + 6x + 7}} \left(-\frac{2x^3 - 8x^2 + 16x}{-2x^3 - 8x^2 + 16x} -\frac{5x^2 - 10x + 7}{-2x^3 - 10x + 7} -\frac{5x^2 - 20x + 40}{-10x - 33} \right) $.: We have to add (33 - 10x)	3				
36.	polynomial will be divisible by $x^2 - 4x + 8$? Ans: $ \frac{2x+5}{x^2-4x+8)2x^3-3x^2+6x+7} \left(\begin{array}{c} -\frac{2x^3-8x^2+16x}{5x^2-10x+7} \\ -\frac{5x^2-20x+40}{10x-33} \end{array} \right) $ \therefore We have to add $(33 - 10x)$ Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.	3				
36.	polynomial will be divisible by $x^2 - 4x + 8$? Ans: $x^2 - 4x + 8 \overline{\smash{\big)}2x^3 - 3x^2 + 6x + 7} \left(\begin{array}{c} 2x^3 - 8x^2 + 16x \\ -\frac{2x^3 - 8x^2 + 16x}{5x^2 - 10x + 7} \\ -\frac{5x^2 - 20x + 40}{10x - 33} \end{array} \right)$ $\therefore \text{ We have to add (33 - 10x)}$ Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides. Ans: For correct Given, To Prove, Constructions and figure	3 1 $\frac{1}{2} \times 4 = 2$				
36.	polynomial will be divisible by $x^2 - 4x + 8$? Ans: $x^2 - 4x + 8 \overline{\smash{\big)}2x^3 - 3x^2 + 6x + 7} \left(-\frac{2x^3 - 8x^2 + 16x}{5x^2 - 10x + 7} -\frac{5x^2 - 20x + 40}{10x - 33} \right)$.: We have to add (33 - 10x) Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides. Ans: For correct Given, To Prove, Constructions and figure For correct proof	3 1 $\frac{1}{2} \times 4 = 2$ 2				
36.	polynomial will be divisible by $x^2 - 4x + 8$? Ans: $x^2 - 4x + 8 \overline{\smash{\big)}2x^3 - 3x^2 + 6x + 7} \left(\begin{array}{c} -\frac{2x^3 + 8x^2 + 16x}{5x^2 - 10x + 7} \\ -\frac{5x^2 - 20x + 40}{10x - 33} \end{array} \right)$ $\therefore \text{ We have to add (33 - 10x)}$ Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides. Ans: For correct Given, To Prove, Constructions and figure For correct proof	3 1 $\frac{1}{2} \times 4 = 2$ 2				
36.	polynomial will be divisible by $x^2 - 4x + 8$? Ans: $x^2 - 4x + 8 \frac{2x + 5}{2x^3 - 3x^2 + 6x + 7} \left(\frac{-\frac{2x^3 - 8x^2 + 16x}{5x^2 - 10x + 7}}{-\frac{5x^2 - 20x + 40}{10x - 33}} \right)$.: We have to add (33 - 10x) Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides. Ans: For correct Given, To Prove, Constructions and figure For correct proof	3 1 $\frac{1}{2} \times 4 = 2$ 2				

Sum of the areas of 2 squares is 544 m^2 . If the difference of their perimeter 37. is 32 m, find the sides of two squares. Ans: Let 'a' and 'b' be the sides of two squares, with a > b. $1\frac{1}{2}$ then $a^2 + b^2 = 544$ and 4a - 4b = 32or a-b=8 \therefore a=b+8 $\therefore (b+8)^2 + b^2 = 544 \implies 2b^2 + 16b - 480 = 0$ 1 $\therefore b^2 + 8b - 240 = 0 \implies (b+20)(b-12) = 0 \implies b = 12$ 1 $b = 12 \text{ m} \implies a = 12 + 8 = 20 \text{ m}$ 1/2OR A motorboat whose speed is 18 km/hr in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream. **Ans:** Let speed of the stream be x km/h $\frac{24}{18-x} - \frac{24}{18+x} = 1$ 2 $\Rightarrow 24(2x) = 324 - x^2$ or $x^2 + 48x - 324 = 0$ 1 \Rightarrow (x + 54) (x - 6) = 0 \Rightarrow x = 6 1 \therefore Speed of the stream = 6 km/h 38. A solid toy in the form of a hemisphere surmounted by a right circular cone of same radius. The height of the cone is 10 cm and the radius of its base is 7 cm. Determine the volume of the toy. Also find the area of the colored sheet required to cover the toy. (Use $\pi = \frac{22}{7}$ and $\sqrt{149} = 12.2$) Volume of toy = $\frac{2}{3}\pi(7)^3 + \frac{1}{3}\pi(7)^2 \times 10 \text{ cm}^3$ Ans: 1 $=\frac{1}{3} \times \frac{22}{7} \times 49 (14+10) = 1232 \text{ cm}^3$ 1 Area of Sheet = Surface area = $2\pi(7)^2 + \pi(7)\sqrt{10^2 + 7^2}$ 1 $= 308 + 22 \times 122 = 5764$ cm² 1 39. A statue 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statute is 60° and from the same point the angle of elevation of the top of pedestal id 45°. Find the height of the pedestal. (Use $\sqrt{3} = 1.73$) Ans: For correct figure. 1 Let h m be the height of pedestal 1.6 m Then from figure, $\frac{h}{x} = \tan 45^\circ = 1$ 1 + 1and $\frac{h+1.6}{x} = \tan 60^{\circ} = \sqrt{3}$ $\Rightarrow \frac{h+1.6}{h} = \sqrt{3} \Rightarrow (\sqrt{3}-1)h = 1.6$ 60 1/2 х C

\Rightarrow h = $\frac{160}{73}$ =	= 2.19	m (appro	x)				
For the following data, draw a 'less than' ogive and hence find the median of the distribution.							
Age							
(In years):	0-1	0 10-2	0 20-30	30-40	40-50	50-60	60-70
Number of person	s: 5	15	20	25	15	11	9
Ans: The points to be plotted for less than ogive are							
(10, 5), (20,	20), (3	0, 40), (4	40, 65), (5	50, 80),	(60, 91)	, (70, 10)0)
Drawing the	e ogive						
Getting med	lian = 3	4 (appro	x)				
bowler in one-day c number of wickets t	taken. $\frac{1}{20-6}$	matches.	Find the $0 100-140$	mean ar	nd the m	edian of $\frac{1}{220}$	f the $0-260$
Number of howlers	· 20-0	5	16	12	.00 100-)	3
Ans.	. /	5	10	12			5
No. of wickets :	20-60	60-100	100-140	140-180	180-220) 220-26	50 Sum
(f_i) No. of bowlers :	7	5	16	12	2	3	45
X _i	40	80	120	160	200	240	
u _i	-2	-1	0	1	2	3	
$f_i x_i$	-14	-5	0	12	4	9	6
cf	7	12	28	40	42	45	
$Mean = a + \frac{\sum f_i u_i}{\sum f_i} \times$	< h = 12	$0 + \frac{6 \times 4}{45}$	$\frac{0}{1} = 125.3$	3			

	QUESTION PAPER CODE 30/5/2							
	EXPECTED ANSWER/VALUE POINTS							
	SECTION – A							
	Vou have to select the correct choice :							
O No	You have to select the correct choice :	Marks						
Q.110.		IVIAI KS						
1.	The value(s) of k for which the quadratic equation $2x^2 + kx + 2 = 0$ has equal roots, is							
	(a) 4 (b) ± 4 (c) -4 (d) 0							
	Ans: (b) ± 4	1						
2.	Which of the following is <i>not</i> an A.P.?							
	(a) $-1.2, 0.8, 2.8,$ (b) $3, 3 + \sqrt{2}, 3 + 2\sqrt{2}, 3 + 3\sqrt{2},$							
	(c) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}, \dots$ (d) $\frac{-1}{5}, \frac{-2}{5}, \frac{-3}{5}, \dots$							
	Ans: (c) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}, \dots$	1						
3.	In Figure 1, from an external point P, two tangents PQ and PR are drawn to a circle of radius 4 cm with centre O. If $\angle QPR = 90^\circ$, then length of PQ is							
	(a) 3 cm							
	(b) 4 cm							
	(c) 2 cm $\sqrt{\sqrt{R}}$							
	(d) $2\sqrt{2}$ cm							
	Ans: (b) 4 cm $\frac{Figure 1}{4}$	1						
4.	The distance between the points $(m, -n)$ and $(-m, n)$ is							
	(a) $\sqrt{m^2 + n^2}$ (b) m + n							
	(c) $2\sqrt{m^2 + n^2}$ (d) $\sqrt{2m^2 + 2n^2}$							
	$() = \sqrt{2}$							
5	Ans: (c) $2\sqrt{m} + n$ The degree of the polynomial having zeroes 3 and 4 only is	1						
5.	(a) 2 (b) 1							
	(c) More than 3 (d) 3							
	Ans: All the three options (a), (c) and (d) are acceptable 1 mark for any of the option (a), (c) or (d)	1						
6.	In Figure 2, ABC is an isosceles triangle, right-angled at C. Therefore	•						
	(a) $AB^2 = 2AC^2$ B							
	(b) $BC^2 = 2AB^2$							
	(c) $AC^2 = 2AB^2$							
	(d) $AB^2 = 4AC^2$							
	Ans: (a) $AB^2 = 2AC^2$ $C \xrightarrow{I \longrightarrow A} A$ Figure 2	1						

_					
7.	The point on the	x-axis which is equid	listant from $(-4, 0)$ a	and $(10, 0)$ is	
	(a) $(7, 0)$	(b) $(5, 0)$	$(\mathbf{c})(0,0)$	$(\mathbf{d})(3,0)$	
	Ans: (d) $(3, 0)$		OR		1
	The centre of a c	ircle whose end point	s of a diameter are (-6.3) and (6, 4) is	
		I I I I I I I I I I I I I I I I I I I	(7)	(7)	
	(a) (8, −1)	(b) (4, 7)	(c) $\left(0, \frac{7}{2}\right)$	(d) $\left(\frac{4}{2}\right)$	
	Ans: (c) $\left(0, \frac{7}{2}\right)$				1
8.	The pair of linea	r equations			
	$\frac{3x}{2} + \frac{5y}{3} = 7$ and	9x + 10y = 14 is			
	(a) consistent		(b) inconsiste	nt	
	(c) consistent wi	th one solution	(d) consistent	with many solutions	
	Ans: (b) inconst	istent			1
9.	In Figure 3, PQ i If $\angle AOB = 100^{\circ}$	s tangent to the circle , then $\angle ABP$ is equal	with centre at O, at to	the point B.	
	(a) 50°				
	(b) 40°				
	(c) 60°		A 100°	+>	
			R	Q	
	(a) 80°		P Figure 3		
	Ans: (a) 50°		8		1
10.	The radius of a s	phere (in cm) whose	volume is 12π cm ³ ,	is	
	(a) 3	(b) $3\sqrt{3}$	(c) $3^{2/3}$	(d) $3^{1/3}$	
	Ans: (c) $3^{2/3}$				1
11.	Fill in the blank AOBC is a rectar The length of its	s in question number ngle whose three vert diagonal is	ers 11 to 15. ices are A(0, -3), O((0, 0) and B(4, 0).	
	Ans: 5 units				1
12.	In the formula \overline{X}	$= a + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times h, \ u_i$	=		
	Ans: $\frac{\mathbf{x}_i - \mathbf{a}}{\mathbf{h}}$				1
13.	All concentric cir Ans: similar	rcles are t	o each other.		1
14.	The probability of	of an event that is sure	e to happen, is	·	
	Ans: 1				1

15.	Simplest form of $(1 - \cos^2 A) (1 + \cot^2 A)$ is Ans: 1							
	Answer the following question numbers 16 to 20.							
16.	The LCM of two numbers is 182 and their HCF is 13. If one of the numbers is 26, find the other.							
	Ans: $\frac{182 \times 13}{26} = 91$							
17.	Form a quadratic polynomial, the sum and product of whose zeros are (-3) and 2 respectively.							
	Ans: $x^2 + 3x + 2$	I						
	Can $(x^2 - 1)$ be a remainder while dividing $x^3 - 3x^2 + 5x - 9$ by $(x^2 + 3)$? Justify your answer with reasons.							
	Ans: No, degree of remainder < degree of divisor	1						
18.	Find the sum of the first 100 natural numbers.							
	Ans: $\frac{100}{2}[2+99] = 5050$	1/2+1/2						
19.	Evaluate: 2 sec $30^{\circ} \times \tan 60^{\circ}$							
	Ans: $2 \times \frac{2}{\sqrt{3}} \times \sqrt{3}$	1/2						
	= 4	1/2						
20.	In Figure 4, the angle of elevation of the top of a tower from a point C on the ground, which is 30 m away from the foot of the tower, is 30°. Find the height of the tower.							
	Ans: $\frac{AB}{30} = \frac{1}{\sqrt{3}} \Rightarrow AB = \frac{30}{\sqrt{3}} \text{ m or } 10\sqrt{3} \text{ m}$ B 30 m	1/2+1/2						
	SECTION – B Figure 4							
	Question numbers 21 to 26 carry 2 marks each.							
21.	Find the mode of the following distribution:							
	Marks: 0-10 10-20 20-30 30-40 40-50 50-60							
	Number of Students:4671256							
	Ans: Modal class : $30 - 40$	1/2						
	Mode = L + $\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h = 30 + \frac{5}{12} \times 10$	1						
	= 34.17	1/2						

A fraction becomes $\frac{1}{3}$ when 1 is subtracted from the numerator and it 30. becomes $\frac{1}{4}$ when 8 is added to its denominator. Find the fraction. Ans: Let the fraction be $\frac{x}{y}$ 1/2 $\therefore \frac{x-1}{y} = \frac{1}{3}, \frac{x}{y+8} = \frac{1}{4}$ 1/2+1/2 \Rightarrow 3x - y = 3, 4x - y = 8 1/2Solving to get x = 5, y = 12 \therefore Fraction is $\frac{5}{12}$ 1 OR The present age of a father is three years more than three times the age of his son. Three years hence the father's age will be 10 years more than twice the age of the son. Determine their present ages. **Ans:** Let the present age of son be x years \therefore Father's present age = (3x + 3) years. 1 3 years hence, Son's age = (x + 3) years 1/2 and father's age = (3x + 6) years *.*.. 3x + 6 = 2(x + 3) + 101 x = 10 \therefore Son's age = 10 years, \Rightarrow Father's age = 33 years 1/231. Using Euclid's Algorithm, find the largest number which divides 870 and 258 leaving remainder 3 in each case. **Ans:** HCF of (870 - 3) and (258 - 3)1 = 867 and 255 $867 = 255 \times 3 + 102$ $1\frac{1}{2}$ $255 = 102 \times 2 + 51$ $102 = 51 \times 2 + 0$ \therefore HCF = 51 1/232. Find the ratio in which the y-axis divides the line segment joining the points (6, -4) and (-2, -7). Also find the point of intersection. Let the point P(0, y) on y-axis Ans: $A \stackrel{K:1}{\underbrace{(6,-4)}} B \\ (0, y) \\ (-2, -7) \\ (0, y) \\ (-2, -7) \\$ 1 $\therefore \quad 0 = \frac{-2K+6}{K+1} \implies K=3 \quad \therefore \text{ Ratio is } 3:1$ 1 Also, $y = \frac{3(-7) + 1(-4)}{3+1} = \frac{-25}{4}$. Point of intersection is $\left(0, \frac{-25}{4}\right)$ 1

	OR	
	Show that the points A(7, 10), B(-2 , 5) and C(3 , -4) are vertices of an	
	isosceles right triangle. Ans: Let the points be $\Lambda(7, 10)$, B(2, 5) and C(3, 4)	
	Ans. Let the points be $A(7, 10)$, $B(-2, 3)$ and $C(3, -4)$	
	AB = $\sqrt{(-2-7)^2 + (5-10)^2} = \sqrt{106}$	1
	BC = $\sqrt{(3+2)^2 + (-4-5)^2} = \sqrt{106}$	1/2
	AC = $\sqrt{(3-7)^2 + (-4-10)^2} = \sqrt{212}$	1/2
	$AB = BC \text{ and } AC^2 = AB^2 + BC^2$	
	Hence ABC is isosceles right triangle.	1
33.	In an A.P. given that the first term (a) = 54, the common difference	
	(d) = -3 , and the n th term (a _n) = 0. Find n and sum of first n terms (S _n) of the A P	
	Ans: $a = 0$	1/2
	54 + (n-1)(-3) = 0	1
	n = 19	-
	$19_{(54+0)}$	
	$S_{19} = \frac{1}{2}(54+0)$	1
	$= 19 \times 27 = 513$	1/2
34.	Read the following passage and answer the questions given at the end:	
	Diwall Fair A game in a booth at Diwali fair involves using of spinner first. Then, if the	
	spinner stops at an even number, the player is allowed to pick a marble from	
	bag. The spinner and the marbles in the bag are represented in Figure-9	
	Prizes are given, when a black marble is picked. Shweta plays the game	
	once.	
	Figure 9	
	(i) What is the probability that she will be allowed to pick a marble from the bag?	
	(ii) Suppose she is allowed to pick a marble from the bag, what is the probability of getting a prize, when it is given that the bag contains 20 balls out of which 6 are black?	
	Ans: (i) P(she will be allowed to pick a marble) = $\frac{5}{6}$	$1\frac{1}{2}$
	(ii) P(getting a prize) = $\frac{6}{20}$ or $\frac{3}{10}$	$1\frac{1}{2}$
	Both answers $\frac{6}{20}$ or $\frac{0}{20}$ for part (ii) in Q34 are to be treated correct	
	as the bag contains marbles only.	

			SEC	TION -	D				
	Question numbers 35	5 to 40	carry 4	marks e	each.				
5.	Sum of the areas of 2 is 32 m, find the sides Ans: Let 'a' and 'b'	squares of two be the	s is 544 squares sides of	m ² . If the two squa	e differ ares, w	The ence of $a > b$	their pe	rimeter	
	then $a^2 + b^2 = a^2$	544 and	l 4a – 4t	o = 32					1
	$\therefore (b+8)^2 + b$ $\therefore b^2 + 8b - 2c$	or $o2 = 544$ $40 = 0$	$a - b = 8$ $\Rightarrow 2$ $\Rightarrow (b + b)$	$3 : a = b^2 + 16b + 20$ (b -	b + 8 - 480 - 12) =	$= 0$ $= 0 \implies$	b = 12		
	$b = 12 m \Rightarrow$	a = 12	+8 = 20	m					1
	A motorboat whose sp go 24 km upstream that of the stream. Ans: Let speed of th	beed is an to re	18 km/h turn dov m be x k	OR r in still wnstrean cm/h	water t	akes 1 h e same s	nour moi pot. Fine	re to d the speec	1
	$\frac{24}{10} - \frac{24}{10}$	- = 1							
	18 - x $18 + x\rightarrow 24(2x) - 2^{2}$	24 - 2	on v ²	10 7	24 - 0				
	$\Rightarrow 24(2x) = 5$ $\Rightarrow (x + 54) (x)$ $\therefore \text{ Speed of th}$	(-6) = ne stream	or $x^2 + 0 \Rightarrow x$ m = 6 kr	- 48x - 3 = 6 n/h	24 = 0				
ó .	A solid toy in the form of a hemisphere surmounted by a right circular cone of same radius. The height of the cone is 10 cm and the radius of its base is 7 cm. Determine the volume of the toy. Also find the area of the coloured sheet required to cover the toy.								
	(Use $\pi = \frac{22}{7}$ and $\sqrt{14}$	9 = 12	.2)						
	Ans: Volume of	toy =	$\frac{2}{3}\pi(7)^3$	$+\frac{1}{3}\pi(7)$	$^2 \times 10$ c	³			
	10	=	$\frac{1}{3} \times \frac{22}{7} \times$	×49 (14 +	-10) =	1232 cm	1 ³		
	7 Area of Sl	heet =	Surface	area = 2	$\pi(7)^2$ -	$+\pi(7)$	$10^2 + 7^2$	-	
		=	308 + 2	2 × 12.2	= 576	.4 cm ²			
7.	For the following data median of the distribution	, draw tion.	a 'less tl	han' ogiv	ve and	hence fi	ind the		
	Age								
	(In years):	0-10	10-20	20-30	30-40	40-50	50-60	60-70	
		5	15	20	25	15	i 11		

	Ans: The points to be plotted for less than ogive are								
	(10, 5), (20, 20), (30, 40), (40, 65), (50, 80), (60, 91), (70, 100)								2
	Drawing the ogive								$1 + \frac{1}{2}$
	Getting median = 34 (approx)								1/2
	OR The distribution given below shows that the number of wickets taken by bowler in one-day cricket matches. Find the mean and the median of the number of wickets taken.								
	Number of wickets	: 20-60) 60-10	0 100-14	0 140-1	80 180-2	220 220-2	60	
	Number of bowlers	: 7	5	16	12	2	3		
	Ans:								
	No. of wickets :	20-60	60-100	100-140	140-180	180-220	220-260	Sum	
	(f_i) No. of bowlers :	7	5	16	12	2	3	45	
	x _i	40	80	120	160	200	240		
	u _i	-2	-1	0	1	2	3		1/2
	$f_i X_i$	-14	-5	0	12	4	9	6	1/2
	cf	7	12	28	40	42	45		1/2
	Mean = $a + \frac{\sum f_i u_i}{\sum f_i} \times h = 120 + \frac{6 \times 40}{45} = 125.33$							$1 + \frac{1}{2}$	
	Median = $l + \frac{\frac{N}{2} - c}{f}$	\times h = 1	$00 + \frac{22}{2}$	$\frac{5-12}{16} \times 4$	40 = 126.2	25			1
38.	From a point on the the top of a transmis are 45° and 60° resp	ground ssion to pectivel	l, the ang wer fixe y. Find	gles of el d at the the heigh	evation o top of a 2 it of the	of the bot 20 m high	tom and n building		
	tower (Use $\sqrt{3} = 1.73$)							
Ans:	Let h be the height of the tower In right $\triangle ABD$							cor. fig. 1	
	$\frac{20}{x} = \tan 45^{\circ}$ $x = 20 \text{ m}$							1	
	In right $\triangle CBD$ $\frac{h+20}{20} = \tan 60^{\circ}$							1	
	h + 20	$= 20^{10}$	$\sqrt{3}$		\downarrow	60	450		
	h	= 20($\sqrt{3}-1$		B←	x	\rightarrow D		1/2
		= 20 >	× 0.73 =	14.60 m					1/2

39.	Prove that in a right-angled triangle, the square of the hypotenuse is	
	equal to the sum of the squares of the two sides.	
	Ans: For correct Given, To Prove, Construction and figure	$\frac{1}{2} \times 4 = 2$
	For correct proof	2
40.	Obtain other zeroes of the polynomial	
	$P(x) = 2x^4 - x^3 - 11x^2 + 5x + 5$	
	If two of its zeroes are $\sqrt{5}$ and $-\sqrt{5}$.	
	Ans: Since $\sqrt{5}$ and $-\sqrt{5}$ are zeroes of p(x), so $(x - \sqrt{5})$ and $(x + \sqrt{5})$	
	are factors of $p(x)$. Thus $(x^2 - 5)$ is a factor of $p(x)$.	1
	$(2x^4 - x^3 - 11x^2 + 5x + 5) \div (x^2 - 5) = 2x^2 - x - 1$	$1\frac{1}{2}$
	$2x^2 - x - 1 = (2x + 1)(x - 1)$	1
	\therefore Other zeroes of p(x) are 1, $-\frac{1}{2}$	1/2
	OR	
	What minimum must be added to $2x^3 - 3x^2 + 6x + 7$ so that the resulting	
	polynomial will be divisible by $x^2 - 4x + 8$?	
	Ans:	
	$ \begin{array}{r} 2x+5 \\ x^{2}-4x+8 \overline{\smash{\big)} 2x^{3}-3x^{2}+6x+7} \\ -2x^{3}+8x^{2}+16x \end{array} $	
	$5x^2 - 10x + 7$	2
	$-\frac{5x^2-20x+40}{+}$	5
	10x-33	
	\therefore We have to add $(33 - 10x)$	1

	QUESTION PAPER CODE 30/5/3 EXPECTED ANSWER/VALUE POINTS SECTION – A								
	Ouestion numbers 1 to 10 are multiple choice questions of 1 mark each.								
	You have to select the correct choice :								
Q.No.		Marks							
1.	The value(s) of k for which the quadratic equation $2x^2 + kx + 2 = 0$ has equal roots, is								
	(a) 4 (b) ± 4 (c) -4 (d) 0								
	Ans: (b) ± 4	1							
2.	Which of the following is <i>not</i> an A.P.?								
	(a) $-1.2, 0.8, 2.8,$ (b) $3, 3 + \sqrt{2}, 3 + 2\sqrt{2}, 3 + 3\sqrt{2},$								
	(c) $\frac{4}{2}, \frac{7}{2}, \frac{9}{2}, \frac{12}{2}, \dots$ (d) $\frac{-1}{5}, \frac{-2}{5}, \frac{-3}{5}, \dots$								
	Ans: (c) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}, \dots$	1							
3.	The radius of a sphere (in cm) whose volume is 12π cm ³ , is								
	(a) 3 (b) $3\sqrt{3}$ (c) $3^{2/3}$ (d) $3^{1/3}$								
	Ans: (c) $3^{2/3}$	1							
4.	The distance between the points $(m, -n)$ and $(-m, n)$ is								
	(a) $\sqrt{m^2 + n^2}$ (b) m + n								
	(c) $2\sqrt{m^2 + n^2}$ (d) $\sqrt{2m^2 + 2n^2}$								
	Ans: (c) $2\sqrt{m^2 + n^2}$	1							
5.	In Figure 1, from an external point P, two tangents PQ and PR are drawn to a	-							
	circle of radius 4 cm with centre O. If $\angle QPR = 90^\circ$, then length of PQ is								
	(a) 3 cm								
	(b) 4 cm $($								
	(c) 2 cm $A = 100^{\circ}$								
	(d) $2\sqrt{2}$ cm								
	Ans: (b) 4 cm P Figure 1	1							
6.	On dividing a polynomial $p(x)$ by $x^2 - 4$, quotient and remainder are found to be x and 3 respectively. The polynomial $p(x)$ is								
	(a) $3x^2 + x - 12$ (b) $x^3 - 4x + 3$ (c) $x^2 + 3x - 4$ (d) $x^3 - 4x - 3$								
	Ans: (b) $x^3 - 4x + 3$								

7.	In Figure 2, DE BC. If $\frac{AD}{DB} = \frac{3}{2}$ and AE = 2.7 cm, then EC is equal to	
	(a) 2.0 cm	
	(b) 1.8 cm	
	(c) 4.0 cm	
	(d) 2.7 cm	
	Ans: (b) 1.8 cm Figure 2	1
8.	The point on the x-axis which is equidistant from $(-4, 0)$ and $(10, 0)$ is	
0.	(a) $(7 \ 0)$ (b) $(5 \ 0)$ (c) $(0 \ 0)$ (d) $(3 \ 0)$	
	Ans: (d) (3, 0)	1
	OR	-
	The centre of a circle whose end points of a diameter are $(-6,3)$ and $(6, 4)$ is	
	$(0^7) \qquad (1^7)$	
	(a) (8, -1) (b) (4, 7) (c) $\binom{0, -2}{2}$ (d) $\binom{4, -2}{2}$	
	Ans: (c) $\left(0, \frac{7}{2}\right)$	1
9.	The pair of linear equations	
	$\frac{3x}{2} + \frac{5y}{3} = 7$ and $9x + 10y = 14$ is	
	(a) consistent (b) inconsistent	
	(c) consistent with one solution (d) consistent with many solutions	
	Ans: (b) inconsistent	1
10.	In Figure 3, PQ is tangent to the circle with centre at O, at the point B. If $\angle AOB = 100^\circ$, then $\angle ABP$ is equal to	
	(a) 50°	
	(b) 40° A $\left(\begin{array}{c} 1000 \\ 1000 \end{array} \right)$	
	(c) 60°	
	(d) 80°	
	Ans: (a) 50° P Figure 3	1
	Fill in the blanks in question numbers 11 to 15.	
11.	Simplest form of $\frac{1 + \tan^2 A}{1 + \cot^2 A}$ is	
	Ans: $\tan^2 A$	1
12.	If the probability of an event E happening is 0.023, then $P(\overline{E}) = $	
	Ans: 0.977	1
13.	All concentric circles are to each other. Ans: similar	1

14.	The probability of an event that is sure to happen, is						
	Ans: 1	1					
15.	AOBC is a rectangle whose three vertices are $A(0, -3)$, $O(0, 0)$ and $B(4, 0)$. The length of its diagonal is Ans: 5 units	1					
	Answer the following question numbers 16 to 20.						
16.	Write the value of $\sin^2 30^\circ + \cos^2 60^\circ$.						
	Ans: $\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2$	1/2					
	$=\frac{1}{2}$	1/2					
17.	Form a quadratic polynomial, the sum and product of whose zeros are (-3) and 2 respectively. Ans: $x^2 + 3x + 2$	1					
	OR						
	Can $(x^2 - 1)$ be a remainder while dividing $x^4 - 3x^2 + 5x - 9$ by $(x^2 + 3)$? Justify your answer with reasons.						
	Ans: No, degree of remainder < degree of divisor	1					
18.	Find the sum of the first 100 natural numbers.						
	Ans: $\frac{100}{2}[2+99] = 5050$	1/2+1/2					
19.	The LCM of two numbers is 182 and their HCF is 13. If one of the numbers is 26, find the other.						
	Ans: $\frac{182 \times 13}{26} = 91$	1/2+1/2					
20.	In Figure 4, the angle of elevation of the top of a tower from a point C on the ground, which is 30 m away from the foot of the tower, is 30°. Find the height of tower.						
	Ans: $\frac{AB}{30} = \frac{1}{\sqrt{3}} \Rightarrow AB = \frac{30}{\sqrt{3}} \text{ m or } 10\sqrt{3} \text{ m}$ B 30° C	1/2+1/2					
	SECTION – B						
	Question numbers 21 to 26 carry 2 marks each.						
21.	• A cone and a cylinder have the same radii but the height of the cone is 3 times that of the cylinder. Find the ratio of their volumes.						
	Ans: $\frac{\frac{1}{3}\pi r^2(3h)}{\pi r^2 h}$	1					
	$=\frac{1}{1}=1:1$	1					

.30/5/3.

.30/5/3.

24.	In the Figure 7, if PQ BC and PR CD, prove that $\frac{QB}{AQ} = \frac{DR}{AR}$.						
	$A \xrightarrow{Q} P C$ $R \xrightarrow{D} D$ Figure 7						
	Ans: $\frac{QB}{AQ} = \frac{PC}{AP}$ (i)	1					
	$\frac{PC}{AP} = \frac{DR}{AR} \qquad \dots (ii)$ From (i) and (ii)	1/2					
	$\frac{\text{QB}}{\text{AQ}} = \frac{\text{DR}}{\text{AR}}$	1/2					
25.	Show that $5+2\sqrt{7}$ is an irrational number, where $\sqrt{7}$ is given to be an irrational number.						
	Ans: Let us assume that $5 + 2\sqrt{7}$ is not an irrational number.						
	$\therefore 5 + 2\sqrt{7}$ is a rational number p i.e. $5 + 2\sqrt{7} = p$	1					
	$\Rightarrow \sqrt{7} = \frac{p-5}{2}$	1/2					
	Which is a contradiction as RHS is a rational but LHS is irrational.						
	Hence $5 + 2\sqrt{7}$ can not be rational, so irrational.	1/2					
	OR						
	Check whether 12 ⁿ can end with the digit 0 for any natural number n.						
	Ans: Prime factors of 12 are $2 \times 2 \times 3$	1					
	Since 5 is not a factor, so 12^n cannot end with 0.	1					
26.	If A, B and C are interior angles of a $\triangle ABC$, then show that						
	$\cot\left(\frac{B+C}{2}\right) = \tan\left(\frac{A}{2}\right).$						
	Ans: A + B + C = 180°, $\therefore \frac{B+C}{2} = 90^{\circ} - \frac{A}{2}$	1					
	$\therefore \cot\left(\frac{B+C}{2}\right) = \cot\left(90^\circ - \frac{A}{2}\right) = \tan\frac{A}{2}$	1					

.30/5/3.

	SECTION – C	
	Question numbers 27 to 34 carry 3 marks each.	
27.	Prove that:	
	$(\sin^4\theta - \cos^4\theta + 1)\cos^2\theta = 2$	
	Ans: L.H.S = $\left[(\sin^2 \theta + \cos^2 \theta) (\sin^2 \theta - \cos^2 \theta) + 1 \right] \cos \sec^2 \theta$	1
	$= \left[1\left(\sin^2\theta - \cos^2\theta\right) - 1\right]\cos^2\theta$	1
	$= 2 \sin^2 \theta \times \csc^2 \theta = 2$	1
28.	Find the sum:	
	$(-5) + (-8) + (-11) + \ldots + (-230)$	
	Ans: $a = -5$, $d = -3$, $a_n = -230$	1/2
	$\Rightarrow -5 + (n-1) \times (-3) = 230$	1
	$(n-1) = \frac{225}{3} = 75$	
	n = 76	1/2
	$S_{76} = \frac{76}{2} \left[-5 + (-230) \right]$	1/2
	= 38(-235) = -8930	1/2
29.	Construct a $\triangle ABC$ with sides BC = 6 cm, AB = 5 cm and $\angle ABC = 60^{\circ}$.	
	Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding	
	sides of $\triangle ABC$.	_
	Ans: Constructing $\triangle ABC$ with given dimensions	1
	Constructing the similar triangle.	2
	UK Draw a circle of radius 3.5 cm. Take a point P outside the circle at a distance of	
	7 cm from the centre of the circle and construct a pair of tangents to the circle	
	from that point.	
	Ans: Drawing a circle of radius 3.5 cm and centre O, and taking a point P such that $OP = 7$ cm	1
	Constructing two tangents.	2
30.	In Figure-8, ABCD is a parallelogram. A semicircle with centre O and	
	the diameter AB has been drawn and it passes through D. If AB = 12 cm and OD \perp AB, then find the area of the shaded region. (Use π = 3.14)	
	A O B Figure 8	

	OR	
	The present age of a father is three years more than three times the age of his son. Three years hence the father's age will be 10 years more than twice the age of the son. Determine their present ages.	
	Ans: Let the present age of son be x years $(2 + 2)$	1
	\therefore Father's present age = $(3x + 3)$ years. 3 years hence. Son's age = $(x + 3)$ years	1
	and father's age = $(3x + 6)$ years	1/2
	$\therefore \qquad 3x+6=2(x+3)+10$	1
	$\Rightarrow x = 10 \therefore \text{ Son's age} = 10 \text{ years,}$ Father's age = 33 years	1/2
33.	Find the ratio in which the y-axis divides the line segment joining the points $(6, -4)$ and $(-2, -7)$. Also find the point of intersection.	
	Ans: $K: 1$ $A \bullet \bullet \bullet B$ (6, -4) $(0, y)$ $(-2, -7)Let the point P(0, y) on y-axisdivides the line segment AB in K : 1$	1
	$\therefore 0 = \frac{-2K+6}{K+1} \Rightarrow K = 3 \therefore \text{Ratio is } 3:1$	1
	Also, $y = \frac{3(-7) + 1(-4)}{3+1} = \frac{-25}{4}$. Point of intersection is $\left(0, \frac{-25}{4}\right)$	1
	OR Show that the points $(7, 10)$, $(-2, 5)$ and $(3, -4)$ are vertices of an isoscales right triangle	
	Ans: Let the points be $(7, 10)$, $(-2, 5)$ and $(3, -4)$	
	AB = $\sqrt{(-2-7)^2 + (5-10)^2} = \sqrt{106}$	1
	BC = $\sqrt{(3+2)^2 + (-4-5)^2} = \sqrt{106}$	1/2
	AC = $\sqrt{(3-7)^2 + (-4-10)^2} = \sqrt{212}$	1/2
	$AB = BC$ and $AC^2 = AB^2 + BC^2$	
	Hence ABC is isosceles right triangle.	1
34.	Use Euclid Division Lemma to show that the square of any positive integer is either of the form $3q$ or $3q + 1$ for some integer q.	
	Ans: Any positive integer 'n' can be of the form $3m$, $3m + 1$, $3m + 2$	1
	$\therefore n^2 = (3m)^2 = 9m^2 = 3(3m^2) = 3q,$	1
	or $n^2 = (3m + 1)^2 = 9m^2 + 6m + 1 = 3(3m^2 + 2m) + 1 = 3q + 1,$	$1\frac{1}{2}$
	or $n^2 = (3m + 2)^2 = 9m^2 + 12m + 3 + 1$ = $2(3m^2 + 4m + 1) + 1 = 2a + 1$	
	= 3(311 + 411 + 1) + 1 = 5q + 1	
	Since square of any positive integer is either of the form $3q$ or $3q + 1$ for some integer q.	1/2

			SEC	TION -	D						
	Question numbers 35 to 40 carry 4 marks each.										
,	Sum of the areas of 2 squares is 544 m^2 . If the difference of their perimeter is 32 m , find the sides of two squares.										
Ans: Let 'a' and 'b' be the sides of two squares, with $a > b$.											
then $a^2 + b^2 = 544$ and $4a - 4b = 32$											
or $a - b = 8$: $a = b + 8$											
	$\therefore (b+8)^2 + b^2 = 544 \implies 2b^2 + 16b - 480 = 0$										
	$\therefore b^2 + 8b - 240$	0 = 0	\Rightarrow (b	+ 20) (b -	- 12) =	$= 0 \Rightarrow$	b = 12				
	$b = 12 \text{ m} \implies a =$	= 12	+8 = 20) m							
		1.	101 /1	OR		1 1					
	go 24 km upstream than of the stream.	to re	eturn do	wnstream	to the	same s	spot. Fin	d the speed			
	Ans: Let speed of the	strea	um be x l	km/h							
	$\frac{24}{18-x} - \frac{24}{18+x} =$	= 1									
	$\Rightarrow 24(2x) = 324$	$-x^2$	or x^2	+ 48x – 3	24 = 0						
	\Rightarrow (x + 54) (x -	6) =	$0 \Rightarrow x$	= 6							
	\therefore Speed of the	strea	m = 6 k	m/h							
	For the following data, or median of the distribution	draw on.	a 'less t	han' ogiv	ve and	hence f	ind the				
	Age										
	(In years):)-10	10-20	20-30	0-40	40-50	50-60	60-70			
	Number of persons:	5	15	20	25	15	11	9			
	Ans: The points to be	plott	ted for le	ess than c	give a	re					
	(10, 5), (20, 20),	(30,	40), (40	, 65), (50), 80),	(60, 91), (70, 1	00)			
	Drawing the ogi	ve									
	Getting median = 34 (approx)										
	OR										
	The distribution given below shows that the number of wickets taken by bowler in one-day cricket matches. Find the mean and the median of the number of wickets taken.										
	Number of wickets : 20)-60	60-100	100-140	140-1	80 180)-220 22	20-260			
	Number of bowlers :	7	5	16	12		2	3			

	OR								
	What minimum must be added to $2x^3 - 3x^2 + 6x + 7$ so that the resulting								
	polynomial will be divisible by $x^2 - 4x + 8$?								
	Ans:								
	2x + 5								
	$x^2 - 4x + 8 \sqrt{2x^3 - 3x^2 + 6x + 7}$								
	$\frac{2x^{3} + 8x^{2} + 16x}{2x^{3} + 8x^{2} + 16x}$								
	$5x^2 - 10x + 7$								
	$5x^2 - 20x + 40$	3							
	- +								
	10x - 33								
	\therefore We have to add $(33 - 10x)$	1							
39.	9. In a cylindrical vessel of radius 10 cm, containing some water, 9000 small spherical balls are dropped which are completely immersed in water which raises the water level. If each spherical ball is of radius 0.5 cm, then find the rise in the level of water in the vessel.								
	Ans: Volume of raised water in cylinder = Volume of 9000 spherical balls	1							
	$\pi (10)^2 H = 9000 \times \frac{4}{3} \times \pi \times (0.5)^3$	2							
	\therefore H = 15 cm	1							
40.	If a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, prove that the other two sides are divided in the same ratio.								
	Ans: For correct Given, To Prove, Constructions and figure	$\frac{1}{2} \times 4 = 2$							
	For correct proof	2							