| Q. | INDIAN SCHOOL AL WADI AL KABIR |
| :--- | :--- | :--- | :--- |
| No. | Thass X, Mathematics -Sample Paper- Set 1 |

8. A bag contains 3 red, 5 black and 7 white balls. A ball is drawn from the bag at random. The probability that the ball drawn is not black, is

OR

Two dice are thrown simultaneously. What is the probability that the sum of the two numbers appearing on the top is $13 ?$
9. The distance between the points $(m,-n)$ and $(-m, n)$ is

OR

Write the coordinates of a point P on x-axis which is equidistant from the points $A(-2,0)$ and $B(6,0)$.
10. For what values of k does the quadratic equation $4 \mathrm{x}^{2}-12 \mathrm{x}-\mathrm{k}=0$ have no real roots?
11. In Fig. PQ is a chord of a circle and PT is tangent at P such that $\angle \mathrm{QPT}=60^{\circ}$, then the measure of $\angle \mathrm{PRQ}$ is \qquad -.

12. After how many decimal places will the decimal representation of the rational number $\frac{229}{2^{2} \times 5^{7}}$ terminate?
13. Point $\mathrm{P}\left(\frac{\mathrm{a}}{8}, 4\right)$ is the mid-point of the line segment joining the points $A(-5,2)$ and $B(4,6)$. The value of ' a ' is
14. The $9^{\text {th }}$ term of the A.P. $-15,-11,-7, \ldots, 49$ is

OR

Find the sum of the first 100 natural numbers.

15.	The mean and median of a distribution are 14 and 15 respectively. The value of mode is							
16.	The given figure is a sector of radius 10.5 cm . find the perimeter of the sector? (Take $\pi=\frac{22}{7}$)							
Section-II: Q17-Q20 Case study-based questions are compulsory. Attempt any 4 sub parts from each question. Each question carries 1 mark								
17.	Case Study Based-1 To promote cooperation, culture, creativity, sharing, self-confidence and other social values, a student adventure camp was organized by the school for class X students and their accommodation was planned in tents. The teacher divides the students into groups, each group of four students was given to prepare a conical tent of radius 7 m and canvas of area $551 \mathrm{~m}^{2}$ in which $1 \mathrm{~m}^{2}$ is used in stitching and wasting of canvas.							
a	Curved surface area of conical tent is:							
	(i)	$\pi \mathrm{rl}$	(ii)	$\pi^{\mathrm{r} 2} \mathrm{~h}$	(iii)	$\frac{1}{2} \pi \mathrm{rl}$	(iv)	$2 \pi \mathrm{r}(\mathrm{r}+1)$
b	Height of the conical tent is:							
	(i)	24 m	(ii)	25 m	(iii)	26 m	(iv)	27 m
c	Volume of the tent is:							
	(i)	$1234 \mathrm{~m}^{3}$	(ii)	$1232 \mathrm{~m}^{3}$	(iii)	$1332 \mathrm{~m}^{3}$	(iv)	$1343 \mathrm{~m}^{3}$

d	How much space is occupied by each student in the tent if there are 4 students in a tent?							
	(i)	$318 \mathrm{~m}^{3}$	(ii)	$813 \mathrm{~m}^{3}$	(iii)	$308 \mathrm{~m}^{3}$	(iv)	$391 \mathrm{~m}^{3}$
e	The cost of canvas for making the tent if the canvas cost ₹ 70 per sq. m is							
	(i)	$₹ 40000$	(ii)	₹ 38570	(iii)	₹ 38575	(iv)	₹ 48470
18.	Case Study Based-2 An aquarium is a transparent tank of water in which the fish plants are kept. The diagram below shows the plan for an aqu hexagonal shape. It will be made using - \quad Six rectangular shaped clear glasses. - One rectangular hexagon clear glass for roof.							eatures and built in
a	Refer to Top View The value of x for which the distance between the points $\mathrm{F}(2,-3)$ and $\mathrm{C}(\mathrm{x}, 5)$ is 10 is:							
	(i)	8 or -4	(ii)	4 or 8	(iii)	5 or -10	(iv)	5 or 10
b	Refer to Top View The midpoint of the line segment joining the points $\mathrm{E}(8,11)$ and $\mathrm{B}(11,15)$ is:							
	(i)	$(6,10)$	(ii)	$\left(\frac{11}{5}, \frac{8}{5}\right)$	(iii)	$\left(17, \frac{15}{4}\right)$	(iv)	$\left(\frac{19}{2}, 13\right)$
c	Refer to Front View The distance of a point $F(8,6)$ from origin is:							
	(i)	12 units	(ii)	16 units	(iii)	14 units	(iv)	10 units

d	Refer to Front view: The perimeter of square EFHI where $\mathrm{E}(-2,0), \mathrm{F}(3,0), \mathrm{H}(3,5)$ and $\mathrm{I}(-2,5)$ is:							
	(i)	$8 \sqrt{5}$ units	(ii)	40 units	(iii)	20 units	(iv)	None of these
e	Refer to Front view: The coordinates of the point which divides segment joining the point $\mathrm{A}(-4,5)$ and $\mathrm{D}(6,3)$ in the ratio $3: 2$ internally is:							
	(i)	$(0,8)$	(ii)	$\left(2, \frac{19}{5}\right)$	(iii)	$\left(8, \frac{13}{2}\right)$	(iv)	$\left(\frac{7}{5}, 3\right)$
19	Cas In a grap	dy Basedroom, fou $\mathrm{p}(\mathrm{x})=\mathrm{ax} .$	dents +c . 0 nil 1 $-\quad$ $-\quad 0$ Richa	Jay, Rich wing grap	Sure dra Jay d) Sure	e asked to the stude		
a	The number of students who have drawn the graph correctly is:							
	(i)	1	(ii)	2	(iii)	3	(iv)	4

d	In $\triangle \mathrm{ABM}$ if $\angle \mathrm{ABM}=30^{\circ}$ find $\angle \mathrm{MCD}$.							
	(i)	65°	(ii)	45°	(iii)	40°	(iv)	30°
e	The length of AM is:							
	(i)	$\sqrt{61} \mathrm{~m}$	(ii)	$\frac{\sqrt{61}}{10} \mathrm{~m}$	(iii)	$\frac{\sqrt{61}}{2} \mathrm{~m}$	(iv)	$\frac{5 \sqrt{61}}{100} \mathrm{~m}$
PART -B: Q21 to Q26 are Very Short Answer Questions of 2 marks each								
21.	If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\frac{1}{\sqrt{3}}, 0<A+B \leq 90^{\circ}, A>B$, then find the values of A and B. OR Prove that $\sqrt{\frac{1-\cos A}{1+\cos A}}=\operatorname{cosec} A-\cot A$							
22.	2 cubes, each of volume $125 \mathrm{~cm}^{3}$, are joined end to end. Find the surface area of the resulting cuboid.							
23.	If the point (x, y) is equidistant from the points $(\mathrm{a}+\mathrm{b}, \mathrm{b}-\mathrm{a})$ and $(\mathrm{a}-\mathrm{b}, \mathrm{a}+\mathrm{b})$, prove that $\mathrm{b} x=\mathrm{ay}$. OR If the line segment joining the points $\mathrm{A}(2,1)$ and $\mathrm{B}(5,-8)$ is trisected at the points P and Q, find the coordinates of P.							
24.	A box contains 125 shirts of which 110 are good, 12 have minor defects and 3 have major defects. Ram Lal will buy only those shirts which are good while Naveen will reject only those which have major defects. A shirt is taken out at random from the box. Find the probability that (i) Ram Lal will buy it (ii) Naveen will buy it							
25.	How many terms of the A.P. $-6, \frac{-11}{2},-5, \frac{-9}{2}, \ldots$. are needed to give their sum zero ?							

26. In Fig. , the radius of incircle of $\triangle \mathrm{ABC}$ of area $84 \mathrm{~cm}^{2}$ is 4 cm and the lengths of the segments AP and BP into which side AB is divided by the point of contact are 6 cm and 8 cm . Find the lengths of the sides AC and BC .

PART B:

Q27 to Q 33 are Short Answer Questions of 3 marks each

27. In Figure , ABCD is a square with side 7 cm . A circle is drawn circumscribing the square. Find the area of the shaded region.

In Fig. , ABCD is a trapezium with $\mathrm{AB} \| \mathrm{DC}$ and $\angle \mathrm{BCD}=30^{\circ}$. If BGEC is a sector of a circle with centre C and $\mathrm{AB}=\mathrm{BC}=7 \mathrm{~cm}, \mathrm{DE}=4 \mathrm{~cm}$ and $\mathrm{BF}=3.5 \mathrm{~cm}$, then find the area of the shaded region (use $\pi=\frac{22}{7}$).

28. If the sum of the first 14 terms of an AP is 1050 and its first term is 10 , find its $20^{\text {th }}$ term.
29. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C. Prove that $\mathrm{AE}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{DE}^{2}$

30.	Draw two concentric circles of radii 2 cm and 5 cm . Take a point P on the outer circle and construct a pair of tangents $P A$ and $P B$ to the smaller circle. Measure PA.							
31.	OR The present age of a father is three years more than three times the age of his son. Three years hence the father's age will be 10 years more than twice the age of the son. Determine their present ages.							
32.	Solve for $x, 12 \mathrm{ab} x^{2}-\left(9 \mathrm{a}^{2}+8 \mathrm{~b}^{2}\right) x+6 \mathrm{ab}=0$.							
33.	Find the ratio in which the line $2 x+3 y=10$ divides the line segment joining the points $(1,2)$ and $(2,3)$.							
PART B: Q34 to Q 36 are Long Answer Questions of 5 marks each								
34.	The median of the following distribution is 30 . Find the missing frequencies f_{1} and f_{2}.							
	Classes	0-10	10-20	20-30	30-40	40-50	50-60	Total
	Frequency	10	10	f_{1}	30	f_{2}	10	100
	If the mean of the following frequency distribution is 188 , find the missing frequencies f_{1} and f_{2}, if the total of all frequencies is 100 :							
	Classes	0-80	80-160	160-2	240		-400	
	Frequency	20	25	fi_{1}			10	
35.	A solid metallic cylinder of diameter 12 cm and height 15 cm is melted and recast into 12 toys in the shape of a right circular cone mounted on a hemisphere of same radius. Find the radius of the hemisphere and total height of the toy, if the height of the cone is 3 times the radius.							
36.	The angle of elevation of a jet plane from a point A on the ground is 60°. After a flight of 15 seconds, the angle of elevation changes to 30°. If the jet plane is flying at a constant height of $1500 \sqrt{3} \mathrm{~m}$, find the speed of the jet plane.							

Answers								
	1	$\sqrt[3]{9}$	2	3024	3.	$\frac{5}{9} \text { OR } 2$	4	No real roots
	5	2 OR $\frac{4}{\sqrt{7}}$	6	6 cm	7	3:1	8	$\frac{2}{3} \text { OR } 0$
	9	$\begin{aligned} & 2 \sqrt{m^{2}+n^{2}} \text { OR } \\ & 2 \end{aligned}$	10	$\mathrm{k}<-9$	11	60°	12	7
	13	-4	14	17 OR 5050	15	17	16	33
	17	$\begin{aligned} & \mathrm{a}(\mathrm{i}) \mathrm{b}(\mathrm{i}) \\ & \mathrm{c}(\mathrm{ii}) \mathrm{d}(\mathrm{iii}) \mathrm{e}(\mathrm{ii}) \end{aligned}$	18	$\begin{aligned} & \mathrm{a}(\mathrm{i}) \mathrm{b}(\mathrm{iv}) \\ & \mathrm{c}(\mathrm{iv}) \mathrm{d}(\mathrm{iii}) \mathrm{e}(\mathrm{ii}) \end{aligned}$	19	$\begin{aligned} & \mathrm{a}(\mathrm{ii}) \mathrm{b}(\mathrm{i}) \\ & \mathrm{c}(\mathrm{ii}) \mathrm{d}(\mathrm{iv}) \mathrm{e}(\mathrm{ii}) \end{aligned}$	20	$\begin{aligned} & \text { a(i) b(iii) } \\ & \text { c(i)d(iv) } \\ & \text { e(iii) } \end{aligned}$
	21	$\mathrm{A}=45^{\circ}, \mathrm{B}=45^{\circ}$	22	$250 \mathrm{~cm}^{2}$	23	$\begin{aligned} & \text { OR P(3,-2) } \\ & Q(4,-5) \end{aligned}$	24	$\text { (i) } \frac{22}{25} \text { (ii) } \frac{122}{125}$
	25	25	26	$16 \mathrm{~cm}, 14 \mathrm{~cm}$	27	$\begin{aligned} & 259 \mathrm{~cm}^{2} \text { OR } \\ & 18.67 \mathrm{~cm}^{2} \end{aligned}$	28	200
	31	$x=3, y=2$ OR 33yrs,10 yrs	32	$\frac{3 a}{4 b}, \frac{2 b}{3 a}$	33	2:3	34	$\begin{aligned} & 30,10 \text { OR } \\ & 15,30 \end{aligned}$
	35	$3 \mathrm{~cm}, 12 \mathrm{~cm}$	36	$720 \mathrm{~km} / \mathrm{hr}$				

