

INDIAN SCHOOL AL WADI AL KABIR

 Department: MathematicsClass X
Sample paper (Set 2)

$\begin{aligned} & \text { Qn. } \\ & \text { no: } \end{aligned}$	Part A
	Section I has 16 questions of 1 mark each.
Q.1.	If $\operatorname{HCF}(336,54)=6$, find $\operatorname{LCM}(336,54)$.
Q.2.	Find the $25^{\text {th }}$ term of the A.P. $-5, \frac{-5}{2}, 0, \frac{5}{2}, \ldots$
Q.3.	Find the nature of roots of the quadratic equation $2 \mathrm{x}^{2}-4 \mathrm{x}+3=0$.
Q.4.	Evaluate : $\sin ^{2} 60^{\circ}+2 \tan 45^{\circ}-\cos ^{2} 30^{\circ}$
Q.5.	Find the value of k for which $x=2$ is a solution of the equation $\mathrm{kx}^{2}+2 \mathrm{x}-3=0$.
Q.6.	The area of two similar triangles are 25 sq. cm and 121 sq. cm. Find the ratio of their corresponding sides.
Q.7.	A ladder 15 m long makes an angle of 60° with the wall. Find the height of the point where the ladder touches the wall.
Q.8.	A solid metallic cuboid of dimensions $9 \mathrm{~m} \times 8 \mathrm{~m} \times 2 \mathrm{~m}$ is melted and recast into solid cubes of edge 2 m . Find the number of cubes so formed.
Q. 9	If the distance between the points $(4, k)$ and $(1,0)$ is 5 , then what can be the possible values of k ?
Q. 10	What is the probability of getting a number less than 5 when a die is thrown once?

(b)	What is the actual height of the tree? (i) 40 m (ii) 50 m (iii) 35 m (iv) 30 m
(c)	What is the area of the right -angled triangle formed? (i) $100 m^{2}$ (ii) $200 \mathrm{~m}^{2}$ (iii) $60 m^{2}$ (iv) $150 m^{2}$
(d)	What is the perimeter of the triangle formed? (i) 60 m (ii) 50 m (iii) 45 m (iv) 100 m
Q.18.	Students of Class 10 were taken to Red Fort as part of their Educational trip. The teacher narrated the facts of Red Fort to the students. The teacher said in this monument one can find combination of solid figures. There are 2 pillars which are cylindrical in shape. Also 2 domes at the corners which are hemispherical and 7 smaller domes at the centre.
(a)	How much cloth material will be required to cover 2 big domes each of radius 2.5 m ? (Take $\pi=\frac{22}{7}$) (i) $75 m^{2}$ (ii) $78.57 \mathrm{~m}^{2}$ (iii) $87.47 \mathrm{~m}^{2}$ (iv) $25.8 \mathrm{~m}^{2}$
(b)	Find the curved surface area of two cylindrical pillars if height of the pillar is 7 m and radius of the base is 1.4 m . (i) $112.3 \mathrm{~cm}^{2}$ (ii) $123.2 m^{2}$ (iii) $90 m^{2}$ (iv) $345.2 \mathrm{~cm}^{2}$
(c)	Find the volume of a hemisphere if the radius of the base is 3.5 m ? (i) $85.9 \mathrm{~m}^{3}$ (ii) $80 \mathrm{~m}^{3}$ (iii) $90 m^{3}$ (iv) $89.83 \mathrm{~m}^{3}$
(d)	The formula to find the volume of a cylindrical pillar is (i) $\pi r^{2} h$ (ii) $\pi r l$ (iii) $\pi r(l+r)$ (iv) $2 \pi r$

(a)	The area of region representing Gold scoring area is (i) $346.5 \mathrm{~cm}^{2}$ (ii) $372 \mathrm{~cm}^{2}$ (iii) $368.85 \mathrm{~cm}^{2}$ (iv) $390 \mathrm{~cm}^{2}$
(b)	Radius of the region representing Gold and Red scoring areas is (i) 42 cm (ii) 52.5 cm (iii) 21 cm (iv) 44 cm
(c)	The diameter of the archery target is (i) 90 cm (ii) 100 cm (iii) 105 cm (iv) 110 cm
(d)	Radius of the region representing Gold, Red, Blue scoring areas is (i) 10.5 cm (ii) 21 cm (iii) 42 cm (iv) 84 cm
	Part B: Section III (2 marks each)
Q.21.	Points $A(3,1), B(5,1), C(a, b)$ and $D(4,3)$ are vertices of a parallelogram $A B C D$. Find the values of a and b.
Q.22.	On a morning walk, three persons step out together and their steps measure $30 \mathrm{~cm}, 36 \mathrm{~cm}$ and 40 cm respectively. What is the minimum distance each should walk so that each can cover the same distance in complete steps?
Q.23.	Form a quadratic polynomial whose zeroes are $5+\sqrt{3}$ and $5-\sqrt{3}$.
Q.24.	If $4 \cos \theta=11 \sin \theta$, find the value of $\frac{11 \cos \theta-7 \sin \theta}{11 \cos \theta+7 \sin \theta}$.
Q.25.	Write the relationship connecting three measures of central tendencies. Hence find the median of the given data if mode is 24.5 and mean is 29.75 .
Q.26.	2 cubes, each of volume $125 \mathrm{~cm}^{3}$, are joined end to end. Find the surface area of the resulting cuboid.

Section IV (3 marks each)

Q.27.

$$
\begin{aligned}
& \text { Solve } \frac{x}{\mathrm{a}}+\frac{y}{\mathrm{~b}}=\mathrm{a}+\mathrm{b} \\
& \frac{x}{\mathrm{a}^{2}}+\frac{y}{\mathrm{~b}^{2}}=2, \quad \mathrm{a}, \mathrm{~b} \neq 0
\end{aligned}
$$

Q.28. If the mean of the following data is 21.5 , find the value of k .

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	6	4	3	k	2

Q.29.

In the given figure, $A B C D$ is a rectangle. P is midpoint of $D C$. If $Q B=7 \mathrm{~cm}, A D=9 \mathrm{~cm}$ and $\mathrm{DC}=24 \mathrm{~cm}$, then prove that $\angle \mathrm{APQ}=90^{\circ}$.

Q.30.

Water is flowing at the rate of $5 \mathrm{~km} /$ hour through a pipe of diameter 14 cm into a tank with rectangular base which is 50 m long and 44 m wide. Find the time in which the level of water in the tank rises by 7 cm . (Use $\pi=\frac{22}{7}$)
Q.31. From a point on the ground, the angles of elevation of the bottom and the top of a tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

Q.32.	In the given figure, $A B C D$ is a trapezium with $A B \\| D C, A B=18 \mathrm{~cm}$, $\mathrm{DC}=32 \mathrm{~cm}$ and the distance between AB and AC is 14 cm . If arcs of equal radii 7 cm taking $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D as centres, have been drawn, then find the area of the shaded region.
Q.33.	Draw two concentric circles of radii 3 cm and 5 cm . Taking a point on the outer circle, construct the pair of tangents to the inner circle.
	Section V (5 marks each)
Q.34.	Prove that: $\frac{\tan ^{3} \theta}{1+\tan ^{2} \theta}+\frac{\cot ^{3} \theta}{1+\cot ^{2} \theta}=\sec \theta \operatorname{cosec} \theta-2 \sin \theta \cos \theta$
Q.35.	A boy standing on a horizontal plane finds a bird flying at a distance of 100 m from him at an elevation of 30°. A girl standing on the roof of a 20 m high building, finds the elevation of the same bird to be 45°. The boy and the girl are on the opposite sides of the bird. Find the distance of the bird from the girl. (Given $\sqrt{2}=1 \cdot 414$)
Q.36.	From each end of a solid metal cylinder, metal was scooped out in hemispherical form of same diameter. The height of the cylinder is 10 cm and its base is of radius 4.2 cm . The rest of the cylinder is melted and converted into a cylindrical wire of 1.4 cm thickness. Find the length of the wire. [Use $\pi=\frac{22}{7}$]

ANSWERS							
Q. 1	3024	Q. 2	55	Q. 3	No real roots	Q. 4	2
Q. 5	$\mathrm{k}=\frac{-1}{4}$	Q. 6	5:11	Q. 7	7.5 m	Q. 8	18
Q. 9	$\mathrm{k}= \pm 4$	Q. 10	$\frac{2}{3}$	Q. 11	-13	Q. 12	$\mathrm{k}=\frac{-3}{2}$
Q. 13	20	Q. 14	2a	Q. 15	$\mathrm{p} \neq 10$	Q. 16	$\mathrm{d}=9$ units
Q. 17	$\begin{array}{ll} \text { (a) (iii), } & \text { (b) (i) } \\ \text { (c) (iv), } & \text { (d) (i) } \end{array}$	Q. 18	$\begin{array}{ll} \hline \text { (a) (ii), } & \text { (b) (ii) } \\ \text { (c)(iv), } & \text { (d) (i) } \end{array}$	Q. 19	$\begin{array}{cc} \hline \text { (a) (ii), } & \text { (b) (iv) } \\ \text { (c)(ii), } & \text { (d) (iii) } \end{array}$	Q. 20	$\begin{array}{ll} \hline \text { (a) (i), } & \text { (b) (iii) } \\ \text { (c)(iii), } & \text { (d) (iii) } \end{array}$
Q. 21	$\mathrm{a}=6, \mathrm{~b}=3$	Q. 22	360 cm	Q. 23	$x^{2}-10 \mathrm{x}+22$	Q. 24	$\frac{93}{149}$
Q. 25	28	Q. 26	$250 \mathrm{~cm}^{2}$	Q. 27	$\mathrm{x}=a^{2}, \mathrm{y}=b^{2}$	Q. 28	$\mathrm{k}=5$
Q. 30	2 hours	Q. 31	$20(\sqrt{3}-1) \mathrm{m}$	Q. 32	$196 \mathrm{~cm}^{2}$	Q. 35	42.42 m
Q. 36	158.4 cm						

