INDIAN SCHOOL AL WADI AL KABIR FIRST PRELIMINARY EXAM 2020-‘21

Sr.No	MARKING SCHEME	Marks
	Section - A All questions are compulsory. In case of internal choices, attempt any one of them.	
[1]	[magnetic flux]	1
[2]	[microwave] OR $\begin{aligned} & \mathrm{C}=\underline{\sqrt{ }} \underline{\mu}_{\mathrm{o}} \varepsilon_{0} \end{aligned}$	1
[3]	$\mathrm{qE}=\mathrm{qVB} \quad \text { or } \quad \mathrm{V}=\frac{E}{B}$	1
[4]	$\mathrm{Vd}^{1}=4 \mathrm{Vd}$	1
[5]	The ground state energy of hydrogen atom is -13.6 eV . What are the kinetic and potential energies of the electron in this state? $K . E=13.6 \mathrm{eV} \text { and } \mathrm{P} \cdot \mathrm{E}=-27.2 \mathrm{Ev}$	$\begin{aligned} & 1 / 2+ \\ & 1 / 2 \end{aligned}$
[6]	α	1

[7]	$1.227 \mathrm{~A}^{\circ}$	1
[8]	brightness decreases	1
[9]	[Violet]	1
[10]	L1- objective, L3- eye piece [ii] $I=a^{2}$	$\begin{aligned} & 1 / 2+ \\ & 1 / 2 \end{aligned}$
[11]	[A]	1
[12]	[C]	1
[13]	[A]	1
[14]	[C]	1
[15]	[1] b angle of incidence is greater than critical angle [2]b more than the refractive index of cladding [3]a There is no loss of intensity of light in reflecting prism	4

	$\begin{aligned} & {\left[\begin{array}{ll} {[4] \mathrm{a}} & 1.05 \\ \text { [5]a } & 28^{0} \end{array}\right.} \end{aligned}$	
[16]	[1] [c] A hollow metal box [2] [b] electrostatic shielding [3] [d] electric field, $\mathrm{E}=0$, Potential $\mathrm{V}=$ constant [4] [b] $\frac{-q}{4 \pi r_{1}^{2}}$ [5] [c] $\frac{Q+q}{4 \pi r_{2}^{2}}$	4
[17]	A charged particle having a charge of 2 nC moving in a magnetic field B with a velocity $\vec{v}=10^{5} \hat{\imath} \mathrm{~m} / \mathrm{s}$ experiences a magnetic force $\vec{F}=2 \times 10^{5}[-\widehat{\jmath}] \mathrm{N}$. Find the direction and magnitude of the magnetic field. $\begin{align*} & \vec{F}=q(\vec{v} \times \vec{B}) \quad---[1 / 2] \\ & 2 \times 10^{-5}-\mathrm{j}=\mathrm{q}\left[10^{5} \mathrm{I} \times \mathrm{B}\right] \end{align*}$ B is acting along the +z axis ----[1/2] $\mathrm{F}=\mathrm{qVB} \sin \theta[1 / 2]$ Or $\mathrm{B}=0.1 \mathrm{~T} \quad---[1 / 2]$	2
[18]	[a] no change [1] For writing the formula alone and final answer is wrong $\theta=\frac{\beta}{d}$ or $\frac{\lambda}{d}[1 / 2]$ [b] no change [1]	2

| [19] | Derivation capacitor
 Figure [1/2]
 [a] definition of wave front [1]
 steps [1/2 +1/2]
 final expression [1/2] any one expression | |
| :--- | :--- | :--- | :--- |

	$\begin{align*} \left(\phi_{B}\right)_{\text {initial }} & =N B A \cos \theta \\ = & 500 \times\left(3.0 \times 10^{-5} \times \pi \times 10^{-2} \cos 0^{0}\right) \mathrm{Wb} \\ = & 1.5 \pi \times 10^{-4} \mathrm{~Wb} \quad[1 / 2] \\ \left(\phi_{B}\right)_{\text {final }}= & 500 \times\left(3.0 \times 10^{-5} \times \pi \times 10^{-2} \cos 180^{0}\right) \mathrm{Wb} \\ = & -1.5 \pi \times 10^{-4} \mathrm{~Wb} \quad[1 / 2] \\ \text { Induced emf } e & =-\frac{d \varphi}{d t} \quad[1 / 2] \\ & =\frac{3 \pi \times 10^{-4}}{0.25} \mathrm{~V} \simeq 3.8 \times 10^{-3} \mathrm{~V} \\ & =3.8 \mathrm{mV} \quad[1 / 2] \tag{1/2} \end{align*}$	
[21]	$\begin{equation*} \text { Total path difference }=\frac{x d}{D}+\frac{\lambda}{4} \tag{1/2} \end{equation*}$ For constructive interference $\begin{aligned} & \frac{x d}{D}+\frac{\lambda}{4}=\mathrm{n} \lambda---[1 / 2] \\ & \text { or } \mathrm{x}=\left[\mathrm{n}-\frac{1}{4}\right] \frac{D \lambda}{d} \quad[1 / 2] \\ & \mathrm{X} 1=\left[1-\frac{1}{4}\right] \frac{D \lambda}{d}=\frac{3 D \lambda}{4 d} \\ & \left.\mathrm{X} 2=\left[2-\frac{1}{4}\right]\right] \frac{D \lambda}{d}=\frac{7 D \lambda}{4 d} \\ & \mathrm{X} 2-\mathrm{X} 1=\frac{D \lambda}{d}=\beta \quad[1 / 2] \end{aligned}$	2
[22]	```\(\mathrm{BH}=\mathrm{BE} \cos \mathrm{I} \quad[1 / 2]\) \(0.4 \times 10^{-4}=\mathrm{BE} \cos 60\) or \(\mathrm{BE}=0.8 \times 10^{-4} \mathrm{~T}[1 / 2+1 / 2+1 / 2]\) OR [a] Definition angle of dip [1/2] [b]Figure [1/2] Step [1/2] Tan I \(=\frac{B V}{B H}[1 / 2]\)```	2

[23]	As reflecting telescope has mirror objective, the image formed is free from chromatic aberration. [1]	2
[24]	[a] labelled diagram of moving coil galvanometer[$1 / 2+$ $1 / 2+1 / 2]$ [b] significance of radial magnetic field - linear scale [1/2]	2
[25]	[i] principle [1/2] [ii] $[1 / 2+1 / 2+1 / 2]$	2
[26]	$\begin{aligned} & \mathrm{E} 1=-\frac{d \emptyset}{d t} \text { or }-\frac{d B A}{d t} \text { or }-A\left[\frac{1-0}{2-0}\right]-[1 / 2] \\ & \mathrm{E} 1=-\left[2.25 \times 10^{-2}\right] \text { volt }[1 / 2] \\ & \mathrm{E} 2=-\frac{d \emptyset}{d t} \text { or }-\frac{d B A}{d t} \text { or }-A\left[\frac{1-1}{4-2}\right][1 / 2] \\ & =0 \text { volt }[1 / 2] \\ & \mathrm{E} 3=-\frac{d \emptyset}{d t} \text { or }-\frac{d B A}{d t} \text { or }-A\left[\frac{0-1}{6-4}\right][1 / 2] \\ & \mathrm{E} 3=2.25 \times 10^{-2} \mathrm{v} \quad[1 / 2] \end{aligned}$	3

[27]	$\begin{aligned} & {[\mathrm{a}] \mathrm{E}=\left\{\frac{E 1}{r 1}+\frac{E 2}{r 2}\right\} \times \frac{r 1 r 2}{r 1+r 2}[1 / 2+1 / 2\}=1.7 \mathrm{~V} \quad[1 / 2]} \\ & \qquad \mathrm{r}=\frac{r 1 r 2}{r 1+r 2}[1 / 2+1 / 2]=0.12 \text { ohm }[1 / 2] \\ & {[\mathrm{ii]} \text { diagram }[1 / 2] \quad \text { OR }} \\ & \left.\begin{array}{l} \text { Steps }[1 / 2+1 / 2+1 / 2]] \\ \text { Final result }[1 / 2] \\ {[i i] ~ z e r o ~ t e m p . ~ c o e f f i c i e n t ~ o f ~ r e s i s t a n c e ~} \end{array} 1 / 2\right] \end{aligned}$	3
[28]	$\begin{equation*} h v=\emptyset_{o}+e V_{o} \tag{1} \end{equation*}$ work function $=-(\mathrm{e} \times$ intercept on the y-axis $)$ Planek's constant $=\mathrm{e} \times$ slope of the curve. OR [a] Definition 'threshold frequency' [1]	3

	$\begin{aligned} & K_{\max }=h f-W_{0} \\ & \frac{1}{2} \mathrm{mv}_{1}{ }^{2}=2 \mathrm{hf}-\mathrm{hf}=\mathrm{hf} \quad[1 / 2] \\ & \frac{1}{2} \mathrm{mv}_{2}{ }^{2}=5 \mathrm{hf}-\mathrm{hf}=4 \mathrm{hf} \quad[1 / 2] \\ & \therefore \frac{v_{1}{ }^{2}}{\mathrm{v}^{2}}=\frac{1}{4} \quad[1 / 2] \\ & \Rightarrow \frac{v_{1}}{v_{2}}=\frac{1}{2} \quad[1 / 2] \end{aligned}$	
[29]	Diagram [1/2] Steps $[1 / 2+1 / 2+1 / 2+1 / 2]$ final answer [1/2]	3
[30]	[a] Labelled diagram [1/2] Electromagnetic induction / mutual induction [1/2] Working[1/2] [b]steps [1/2+1/2] Final result [1/2]	3
[31]	Diagram [1/2 + $1 / 2$] Steps $[1 / 2+1 / 2+1 / 2+1 / 2+1 / 2+1 / 2+1 / 2]$ final answer [1/2] OR [a] Diagram [1/2 + $1 / 2$] Steps $[1 / 2+1 / 2+1 / 2+1 / 2]$ final answer [1/2+1/2]] [b] Graph [1/2] These become weaker with increasing n, since only onefifth, one-seventh, etc. of the slit contributes the intensity	5

[32]	basic principle [1/2] derivation steps $=1 / 2+1 / 2+1 / 2]$ labelled diagram $-[1 / 2+1 / 2]$ working $-[1 / 2+1 / 2+1 / 2+1 / 2]]$ OR [a] impedance [1/2] Circuit diagram [1/2] phasor diagram [1/2] derivation steps [$1 / 2+12+1 / 2+1 / 2]$ final result [1/2] [c] expression for phase angle ' Φ ' Step [1/2] Final result [1/2]	5
[33]		5

