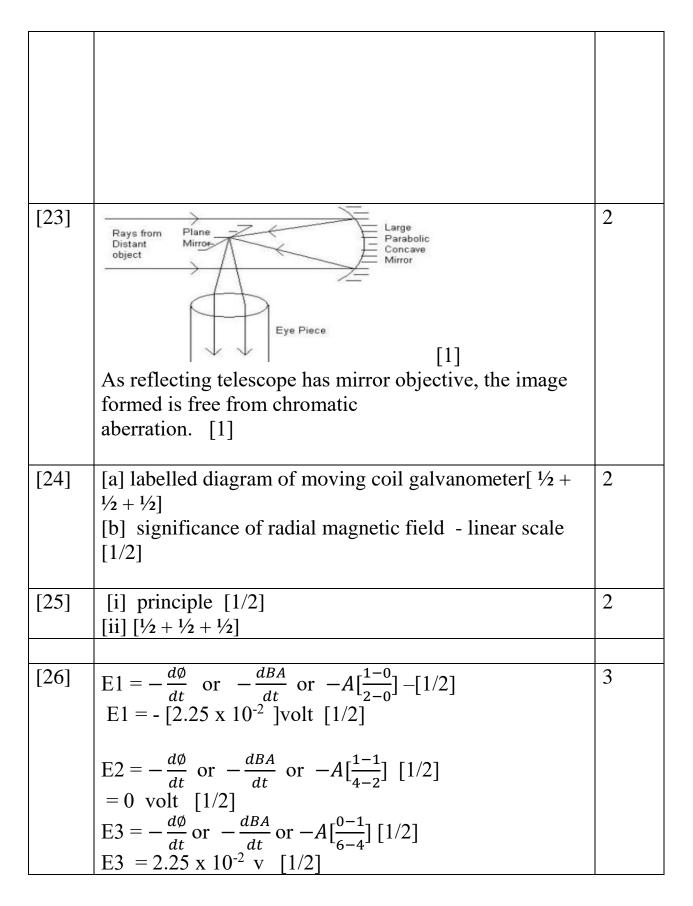
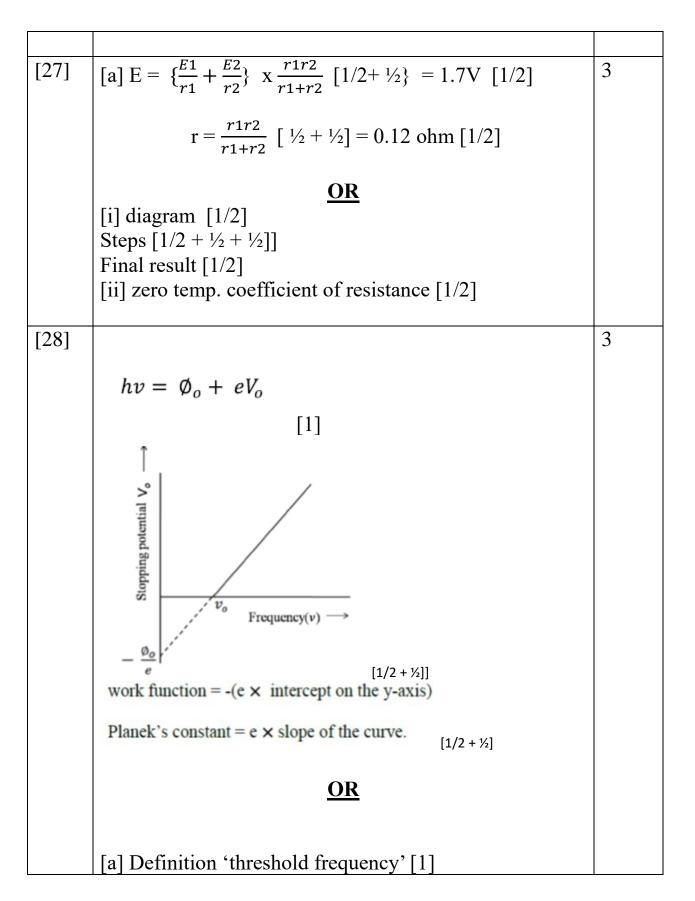

## INDIAN SCHOOL AL WADI AL KABIR FIRST PRELIMINARY EXAM 2020- '21

| Sr.No | MARKING SCHEME                                                                                                                                                            | Marks                                |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|       | Section – A<br>All questions are compulsory. In case of internal<br>choices, attempt any one of them.                                                                     |                                      |
| [1]   | [magnetic flux]                                                                                                                                                           | 1                                    |
| [2]   | [microwave]<br>$\underline{OR} \qquad C = \underbrace{1}_{\sqrt{\mu_0}\epsilon_0}$                                                                                        | 1                                    |
| [3]   | $qE = qVB$ or $V = \frac{E}{B}$                                                                                                                                           | 1                                    |
| [4]   | $Vd^1 = 4Vd$<br>Manganin                                                                                                                                                  | 1                                    |
| [5]   | The ground state energy of hydrogen atom is – 13.6 eV.<br>What are the kinetic and potential energies of the<br>electron in this state?<br>K.E = 13.6 eV and P.E =-27.2Ev | <sup>1</sup> / <sub>2</sub> +<br>1/2 |
| [6]   | α                                                                                                                                                                         | 1                                    |


| [7]  | 1.227A°                                                                                                                                                                                                       | 1            |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| [8]  | brightness decreases<br>Zero                                                                                                                                                                                  | 1            |
| [9]  | [Violet]                                                                                                                                                                                                      | 1            |
| [10] | L1- objective , L3- eye piece<br>$\underbrace{OR}{[ii] I = a^2}$                                                                                                                                              | 1/2 +<br>1/2 |
| [11] | [A]                                                                                                                                                                                                           | 1            |
| [12] | [C]                                                                                                                                                                                                           | 1            |
| [13] | [A]                                                                                                                                                                                                           | 1            |
| [14] | [C]                                                                                                                                                                                                           | 1            |
| [15] | <ul> <li>[1] b angle of incidence is greater than critical angle</li> <li>[2]b more than the refractive index of cladding</li> <li>[3]a There is no loss of intensity of light in reflecting prism</li> </ul> | 4            |


| [16] | [4]a 1.05<br>[5]a 28 <sup>0</sup><br>[1] [c] A hollow metal box<br>[2] [b] electrostatic shielding<br>[3] [d] electric field, E = 0, Potential V = constant<br>[4] [b] $\frac{-q}{4\pi r_1^2}$                                                                                                                     | 4 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| [17] | [5] [c] $\frac{Q+q}{4\pi r_2^2}$                                                                                                                                                                                                                                                                                   | 2 |
| [17] | A charged particle having a charge of 2nC moving in a<br>magnetic field B with a velocity $\vec{v} = 10^5 \hat{\imath}$ m/s<br>experiences a magnetic force $\vec{F} = 2 \times 10^5 [-\hat{\jmath}]$ N. Find<br>the direction and magnitude of the magnetic field.<br>$\vec{F} = q(\vec{v} \times \vec{B})$ [1/2] | 2 |
|      | $2 \times 10^{-5} -j = q[10^{5} I \times B][1/2]$<br>B is acting along the + z axis[1/2]<br>F = qVB sinθ [½]<br>Or                                                                                                                                                                                                 |   |
| [18] | B = 0.1T[1/2]                                                                                                                                                                                                                                                                                                      | 2 |
| [18] | [a] no change [1]<br>For writing the formula alone and final answer is wrong<br>$\theta = \frac{\beta}{d}$ or $\frac{\lambda}{d}$ [1/2]<br>[b] no change [1]                                                                                                                                                       |   |



5

|      | $(\phi_B)_{initial} = NBA\cos\theta$                                                                                          |   |
|------|-------------------------------------------------------------------------------------------------------------------------------|---|
|      |                                                                                                                               |   |
|      | $= 500 \times (3.0 \times 10^{-5} \times \pi \times 10^{-2} \cos 0^{0}) Wb$                                                   |   |
|      | $= 1.5 \pi \times 10^{-4} Wb$ [1/2]                                                                                           |   |
|      | $(\phi_B)_{final} = 500 \times (3.0 \times 10^{-5} \times \pi \times 10^{-2} \cos 180^{\circ}) Wb$                            |   |
|      | $= -1.5\pi \times 10^{-4} Wb$ [1/2]                                                                                           |   |
|      | Induced emf $e = -\frac{d\varphi}{dt}$ [1/2]                                                                                  |   |
|      | $=\frac{3\pi\times10^{-4}}{0.25}V\simeq3.8\times10^{-3}V$                                                                     |   |
|      | =3.8mV [1/2]                                                                                                                  |   |
| [21] | Total path difference = $\frac{xd}{D} + \frac{\lambda}{4}$ [1/2]                                                              | 2 |
|      | For constructive interference                                                                                                 |   |
|      | $\frac{xd}{D} + \frac{\lambda}{4} = n \lambda[1/2]$                                                                           |   |
|      | or $\mathbf{x} = \begin{bmatrix} \mathbf{n} - \frac{1}{4} \end{bmatrix} \frac{D\lambda}{d} \begin{bmatrix} 1/2 \end{bmatrix}$ |   |
|      | T U                                                                                                                           |   |
|      | X1 = $\begin{bmatrix} 1 - \frac{1}{4} \end{bmatrix} \frac{D\lambda}{d} = \frac{3D\lambda}{4d}$                                |   |
|      | X2 = $\left[2 - \frac{1}{4}\right] \frac{D\lambda}{d} = \frac{7D\lambda}{4d}$                                                 |   |
|      | $X2 - X1 = \frac{D\lambda}{d} = \beta  [1/2]$                                                                                 |   |
| [22] | $BH = BE \cos I [1/2]$                                                                                                        | 2 |
|      | $0.4 \ge 10^{-4} = BE \cos 60 \text{ or } BE = 0.8 \ge 10^{-4} \text{T} [\frac{1}{2} + \frac{1}{2} + \frac{1}{2}]$            |   |
|      | <u>OR</u>                                                                                                                     |   |
|      | [a] Definition angle of dip [1/2]                                                                                             |   |
|      | [b]Figure [1/2]                                                                                                               |   |
|      | Step [1/2]                                                                                                                    |   |
|      | $Tan I = \frac{BV}{BH} [1/2]$                                                                                                 |   |





|      |                                                                                                                 | <u>F</u> 1 |
|------|-----------------------------------------------------------------------------------------------------------------|------------|
|      | $K_{max} = hf - W_0$<br>$\frac{1}{2}mv_1^2 = 2hf - hf = hf$ [1/2]                                               |            |
|      | $\frac{1}{2}mv_1^2 = 2hf - hf = hf [1/2]$<br>$\frac{1}{2}mv_2^2 = 5hf - hf = 4hf [1/2]$                         |            |
|      | $\therefore \frac{v_1^2}{v_2^2} = \frac{1}{4} [1/2]$                                                            |            |
|      | $\Rightarrow \frac{v_1}{v_2} = \frac{1}{2}  [1/2]$                                                              |            |
| [29] | Diagram [1/2]                                                                                                   | 3          |
|      | Steps $[1/2 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}]$                                                         | 5          |
|      | final answer [1/2]                                                                                              |            |
|      |                                                                                                                 |            |
| [30] | [a]                                                                                                             | 3          |
|      | Labelled diagram [1/2]                                                                                          |            |
|      | Electromagnetic induction / mutual induction [1/2]                                                              |            |
|      | Working[1/2]                                                                                                    |            |
|      | [h]stops $[1/2 + 1/2]$                                                                                          |            |
|      | [b]steps [1/2+ 1/2]<br>Final result [1/2]                                                                       |            |
|      |                                                                                                                 |            |
|      |                                                                                                                 |            |
| [31] | Diagram $[1/2 + \frac{1}{2}]$                                                                                   | 5          |
|      | Steps $[1/2 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}]$ |            |
|      | final answer [1/2]                                                                                              |            |
|      | [a]                                                                                                             |            |
|      | Diagram $[1/2 + \frac{1}{2}]$                                                                                   |            |
|      | Steps $[1/2 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}]$                                                         |            |
|      | final answer $[1/2 + \frac{1}{2}]$                                                                              |            |
|      | [b]                                                                                                             |            |
|      | Graph [1/2]                                                                                                     |            |
|      | These become weaker with increasing n, since only one-                                                          |            |
|      | fifth, one-seventh, etc. of the slit contributes the                                                            |            |
|      | intensity                                                                                                       |            |
|      | [1/2]                                                                                                           |            |
|      |                                                                                                                 |            |

| [32] | basic principle [1/2]                                                                                                                                                | 5 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | derivation steps = $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$                                                                                                         | 5 |
|      | labelled diagram $- [1/2 + \frac{1}{2}]$                                                                                                                             |   |
|      | working $-[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}]$                                                                                                   |   |
|      | working = [72 + 72 + 172]                                                                                                                                            |   |
|      | OR                                                                                                                                                                   |   |
|      | [a] impedance [1/2]                                                                                                                                                  |   |
|      | Circuit diagram [1/2]                                                                                                                                                |   |
|      | phasor diagram [1/2]                                                                                                                                                 |   |
|      | derivation steps $[\frac{1}{2} + 12 + \frac{1}{2} + \frac{1}{2}]$                                                                                                    |   |
|      | final result [1/2]                                                                                                                                                   |   |
|      | [c] expression for phase angle ' $\Phi$ '                                                                                                                            |   |
|      | Step [1/2]                                                                                                                                                           |   |
|      | Final result [1/2]                                                                                                                                                   |   |
| [33] | Diagram $[1/2 + \frac{1}{2}]$                                                                                                                                        | 5 |
|      | Steps $[1/2 + \frac{1}{2} + \frac{1}{2}]$                                                                                                                            |   |
|      | final answer $[1/2 + \frac{1}{2}]$                                                                                                                                   |   |
|      | $F1=2 \times 10^{-8} \times 3.6 \times 10^{8} = 7.2 N [1/2]$                                                                                                         |   |
|      | $F2 = 2 \times 10^{-8} \times 3.27 \times 10^{8} = 6.54 \text{ N} [1/2]$                                                                                             |   |
|      | Net force = $7.2 - 6.54 = 0.66$ N [1/2]                                                                                                                              |   |
|      | OR                                                                                                                                                                   |   |
|      | [a] Diagram $[1/2 + \frac{1}{2}]$                                                                                                                                    |   |
|      | Steps $[1/2 + \frac{1}{2} + \frac{1}{2}]$                                                                                                                            |   |
|      | final answer $[1/2 + \frac{1}{2}]$                                                                                                                                   |   |
|      | -q +Q -q                                                                                                                                                             |   |
|      | $\frac{1}{2}$ r $\frac{2}{7}$ r $\frac{3}{7}$                                                                                                                        |   |
|      |                                                                                                                                                                      |   |
|      | $U = \frac{Kq1 q2}{r12} + \frac{K q2 q3}{r23} + \frac{Kq3 q1}{r31} = 0 \ [1/2]$ $U = \frac{-Kq x + Q}{r} + \frac{K Q x - q}{r} + \frac{K - q x - q}{2r} = 0 \ [1/2]$ |   |
|      | $U = \frac{-\kappa q  x + Q}{r} + \frac{\kappa Q  x - q}{r} + \frac{\kappa - q  x - q}{2r} = 0 \ [1/2]$                                                              |   |
|      | $Q/q = \frac{1}{4}$ [1/2]                                                                                                                                            |   |
|      |                                                                                                                                                                      |   |