

INDIAN SCHOOL AL WADI AL KABIR

				Final Examination	(202	23-24)		
Class: E	X			Sub: MATHEM	ATI	CS (041)		Max Marks: 80
Date: 27	1/02/2024 (SET 2) Time:3 hours						Time:3 hours	
Genera	l Ins	structions:						
1	. T	his question paper	has	5 sections- A, B,	C, D	and E.		
á	2. 5	ection A- (MCQ)	cor	nprises of 18 qu	esti	ons of 1 mark e	ach	and 2 Assertion
	R	easoning questions	of	1 mark each.				
	3. S	ection B- (Short a	ารพ	er) comprises of 5	ō que	estions of 2mark e	eact	۱.
	4. S	ection C- (Long ans	wei	r) comprises of 6	ques	tions of 3 marks	eacl	า.
	5. S	ection D- (Long ans	swe	r) comprises of 4	ques	stions of 5 marks	eac	h.
	5. S	ection E - compris	es	of 3 Case study-	base	d questions of 4	mai	rks each with sub
	p	arts of the values i	l, 1	and 2 marks each	res	pectively.		
	7. A	Il Questions are co	mp	ulsory. However, a	an in	ternal choice in 2	Qs	of 2 marks, 2 Qs
	0	f 3 marks and 2 Q	ues	tions of 5 marks	has	been provided. A	n ir	nternal choice has
	b	een provided in the	21	narks questions o	f Se	ction E.		
				Section A				
				$PART_1(MCO_1)$	nark	each)		
	r				laik	caeny		
Q.1.	Mehul does not like the colour painted on the large wooden ball he has. So,					all he has. So,		
	be wants to scratch and remove the colour so that he can paint it with							
	The wants to scratch and remove the colour so that he can paint it with							
	an	other colour. If the	ne	diameter of the	ball	is /m, the area	he	has to scratch
	wi	ll be:						
	Δ	$154m^2$	B	$145m^2$	C	77 m ²	П	308m ²
		10 111		1.000	C	77111		50011
Q.2.	ть	α value of α and	h if	$f^{\sqrt{2}-1} = a + b_{1}/2$	ic			
	'''		υn	$\frac{1}{\sqrt{2}+1} = u + b \sqrt{2}$	15.			
	~	a-2b-2	P	a = 2 h = 2	C	a - 2h - 2		a = 2b = 2
	A	u = 5, v = -2	D	u = 2, v = 3		u = 5, v = 2	ש	u = -5, v = -2

Q. 3.	The length of each side of an equilateral triangle is $4\sqrt{3}cm$. Then its area is:							
	A	$21\sqrt{3}cm^2$	В	$12\sqrt{3}cm^2$	С	$16\sqrt{3}cm^2$	D	$8\sqrt{3}cm^2$
Q. 4.	Th	e simplest ration	aliz	ing factor of $\frac{1}{\sqrt{12}}$	is:			
	Α	$\sqrt{6}$	В	$\sqrt{3}$	С	$\sqrt{5}$	D	$\sqrt{2}$
Q. 5.	If I gra	P(-1, 1), $Q(3, -4)aph paper, then t$), F :he	R(1, -1), $S(-2, -1)points in the fou$	·3) a urth	and T(-4,4) are quadrant are:	plo	otted on the
	A	P and T	В	Q and R	С	P and S	D	R and S
Q. 6.	In If 2 are	In the given figure, O is the centre of the circle. If $\angle BOD = 150^\circ$, then, the values of x and y respectively are:						
	A	60°, 120°	В	70°, 110°	С	150°,30°	D	105°,75°
Q. 7.	In pla AB	In \triangle ABC, AB = 30 cm, BC = 28 cm and AC= 24 cm respectively. If a tape is placed along the sides of \triangle QPR which is formed by joining the midpoint of AB, BC and AC respectively, then the length of the tape is:						
	A	41 cm	В	82 cm	С	84 cm	D	42 cm

Q. 8.	Which among the following expresses $1.\overline{7}$ in the form of $\frac{p}{q}$, where p and q							
	are	integers and q	≠ 0	?				
	A	$\frac{90}{16}$	В	$\frac{16}{90}$	С	$\frac{9}{16}$	D	$\frac{16}{9}$
Q. 9.	"If equals are added to the equals, the wholes are equal" is stated in the form of:							
	A	an axiom	В	a definition	С	a postulate	D	a proof
Q.10.	If 2	x + 1 is a factor of	of t	he polynomial 2	x^2 ·	+ kx , then the v	alu	e of k is:
	A	-2	В	4	С	2	D	-3
Q.11.	In $\triangle ABC$ and $\triangle PQR$, $AB = PQ$ and $\angle B = \angle Q$. Then the two triangles will be congruent by SAS axiom if:							
	A	AC = PR	В	BC = PQ	С	AC = QR	D	BC = QR
Q.12.	For a frequency distribution, the mid value of the class is 65 and the class size is 8. The upper limit of the class interval is:							
	A	57	В	73	С	69	D	61
Q.13.	The sides of a triangle are in the ratio 12:14:25 and its perimeter is $255 m$. The measure of the greatest side of the triangle is:							
	Α	120 m	В	125 m	С	60 m	D	70 m
Q.14.	Vo is_	lume of a right ci 	rcu	lar cone of base	e are	ea 50cm ² and he	eig	ht 9 cm
	A	50 <i>cm</i> ³	В	450 cm ³	С	150 cm ³	D	1350 cm ³

Q.15.	In the given figure, AB CD, then the value of x is: A B 140°							
						≺ C		35°
	A	285°	В	75°	С	105°	D	145°
Q.16.	In	the given figure,	0	is the centre of t	the	circle.		
	If ∠	∠ ABC=20°, then	Zŀ	AOC is			A	O 20° B
	Α	20°	B	60°	С	40°	D	10°
Q.17.	The value of k, if $x = 2$, $y = -1$ is a solution of the equation $2x - 3y = k$ is:							
	A	1	В	6	С	5	D	7
Q.18.	The value of $300^2 - 299^2$ is							
	Α	1	В	499	С	600	D	599
	ASSERTION AND REASONING (1 mark each)							
	DIRECTION: A statement of Assertion (A) is followed by a statement of Reason (R).							
	Choose the correct option.							
	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).							
	(b) cor	Both Assertion (rect explanation	A) of	and Reason (R) Assertion (A).	are	true and Reaso	n (I	R) is not the
	(c)	Assertion (A) is	tru	e but Reason (R) is	false.		
	(d)	Assertion (A) is	fals	se but Reason (F	R) is	s true.		

Q.19	Assertion: (x - 1) is a factor of $x^3 + 3x^2 + 5x + 9$
	Reason: If p(x) be a polynomial of degree greater than or equal to one,
	then $(x - a)$ is a factor of $p(x)$, if $p(a) = 0$
Q.20	Assertion: In the given figure, if $l \parallel m$, then the value of x is 15 ^o .
	$(120^{\circ} - x) l$ $(5x) m$
	Reason: When two parallel lines are cut by a transversal then, each pair of corresponding angles are supplementary.
	Section B (S.A. 2 mark each)
Q.21.	a) The volume of two hemispheres are in the ratio 27:125. Find the ratio of their radii. OR
	b) Find the volume of a sphere whose surface area is $616cm^2$. $(\pi = \frac{22}{7})$
Q.22.	a) Simplify: $\sqrt{242} - \sqrt{50} + \sqrt{98}$.
	OR
	b) Represent $\sqrt{6.5}$ on a number line.
Q.23.	Pookalam is the flower bed or flower pattern designed during Onam in Kerala. Soumya and her friends made a pookalam with isosceles triangle whose perimeter is 32 m and each of the equal sides is 10 m. If the pookalam was made with 8 isosceles triangles, find the total area of the pookalam.

0 24	The following gra	ph gives	the inform	nation ab	out the n	umber of	railway	
Q.27.	tickets sold for di	fferent ci	ties on a	railway tio	cket count	er betwee	en 6.00 am	1
	to 10.00 am. Rea	to 10.00 am. Read the bar graph and answer the following questions.						
	(a) How many tick	V 100 90 90 80 70 60 50 40 30 20 10 0 Cets were	Sold in all	Delhi ties	Guwahati	$\rightarrow X$		
	 (c) For which city was the maximum number of tickets sold? (c) For which city was the minimum number of tickets sold? (d) Find the number of tickets sold for Delhi and Patna taken together. 							
Q.25.	Express the equation $2(x - 3) + 3y = 0$ in the form of $ax + by + c = 0$ and indicate values of <i>a</i> , <i>b</i> and <i>c</i> .							
	Section C							
			(S.A.)	3 mark ea	nch)			
Q.26.	Plot the points A(5, 7), B(5, -1), C(-3 , -1) and D(-3 , 7) on the graph paper. Join the points A, B, C and D in order and identify the figure formed.							
Q.27.	State any three Euclid's axioms.							
Q.28.	Draw a frequency polygon for the following distribution:							
	Marks obtained	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	
	No. of students	7	10	6	8	12	3	

Q.29.	a) If $f(x) = 2x^3 - 2x^2 + 5x - 4$, find $f(2) + f(-1) + f(0)$						
	Or						
	b) Factorize $x^3 - 8x^2 + 5x + 14$.						
Q.30.	a) AB is a line segment. P and Q are points on opposite sides of AB, such						
	that each of them is equidistant from the points A and B. \mathbb{R}						
	Show that:						
	i) $\Delta PAQ \cong \Delta PBQ$.						
	ii) Is $\angle APQ = \angle BPQ$?						
	iii) $\Delta PAC \cong \Delta PBC.$						
	iv) PC is perpendicular to AB.						
	OR D						
	b) $\triangle ABC$ is an isosceles triangle in which AB = AC. Side BA						
	is produced to D such that $AD = AB$. Show that						
	∠ BCD is a right angle.						
0.21	Curren mede a nicture with some white paper and ever paper as chown in						
Q.31.	Suman made a picture with some white paper and grey paper as shown in						
	the figure. White paper is available at her home free of cost. Find the cost of						
	grey paper used at the rate of 50 paise per cm^2 . (take $\sqrt{3} = 1.73$)						
	Contraction of the contraction o						

	Section D
	(L.A5 mark each)
Q.32.	a) Simplify: $\frac{4}{(343)^{-\frac{2}{3}}} + \frac{1}{(625)^{-\frac{3}{4}}} + \frac{2}{(243)^{-\frac{1}{5}}}$
	OR
	b) If $x = \frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}$, $y = \frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}$, then find the value of $(x + y)^3$
Q.33.	a) Prove that the angle subtended by an arc at the center is double the
	angle subtended by it at the remaining part of the circle.
	OR
	b) In figure, PS = SR, \angle RPS = 54° and \angle PRQ = 46°. Find the measure
	of angles a, b, x, y and z .
	P 54 46 V A A R A R
Q.34.	ABCD is a parallelogram. Two points P and Q are taken on the diagonal BD such that $DP = BQ$.
	Show that:
	i) $\Delta APD \cong \Delta CQB.$
	ii) $AP = CQ$.
	iv) $AO = CP$.
	v) APCQ is a parallelogram.

Q.35.	Find thr linear e	Find three solutions for the equation $x + 2y = 8$ and draw the graph of the linear equation.							
		Section E							
		(CASE STUDY BASED QUESTIONS- 4 mark each)							
Q.36.	CASE S	TUDY-I	٠						
	Shubha restaura parents for the caps to	Shubham was celebrating his birthday on a roof top garden restaurant along with his parents and sister Reshma. His parents invited their relatives, family friends and neighbours for the party. They decieded that they will provide birthday caps to all children below the age of 12 years.							
	i)	Reshma was very passionate for making birthday caps. If t of a cap is 16 cm and base radius is 12 cm, find the slant h	he height height. (1)						
	ii)	Reshma served soup along with the starters. How many lit	res of						
		soup can a conical vessel of base radius 21 cm and height	20 cm						
		hold? (<i>use</i> $\pi = \frac{22}{7}$)	(1)						
	iii)	a)Ravi asked the manager to decorate the hall with metalli	c spheres						
		of diameter 21 cm as shown in the figure. The contractor p	painted						
		each sphere with neon green. Find the cost of painting 4 s	uch						
		spheres at the rate of 50 paise per cm^2 .	(2)						
		OR b) A metallic sphere is of radius 2.1 cm. If the density of t is 7.8g/cm ³ , find the mass of the sphere. (take $\pi = \frac{22}{7}$)	he metal						

Q.37.	CASE STUDY-II:
	Polynomials are algebraic expressions that contain indeterminates and constants. Polynomials can be considered as a dialect of mathematics. They are used to express numbers in almost every field of mathematics and are considered very important in certain branches of math, such as calculus.
	During an enrichment activity conducted in class IX, some paper slips were made and placed in the box with the name of the topic "POLYNOMIALS" written on it. The students were asked to pick one slip at a time and answer the question in the slip.
	Polynomials Polynomials
	Based on the above information answer the following questions:
	i) The polynomial written on Anvi's slip was $p(x) = x^2 - 2\sqrt{2}x + 1$.
	What is the value of p $(2\sqrt{2})$? (1)
	ii) Evaluate 104×96 using identities. (1)
	iii) a) If a + b + c=11, ab + bc + ca=36, find $a^2 + b^2 + c^2$. (2)
	OR
	b) If $x + \frac{1}{x} = 7$, then find the value of $x^3 + \frac{1}{x^3}$. (2)
