

INDIAN SCHOOL AL WADI AL KABIR

Pre-Mid-Term Examination (2023-24) Sub: MATHEMATICS (041) Set-2 (Marking Scheme)

Class: X Date: 23-05-2023 Max Marks: 30 Time: 1 hour

General Instructions:

- 1. This question paper is divided in to 4 sections- A, B, C and D.
- 2. Section A comprises of 7 questions of 1 mark each.
- 3. Section B comprises of 3 questions of 2 marks each.
- 4. Section C comprises of 3 questions of 3 marks each.
- 5. Section D comprises of two case study-based questions of 4 marks each.
- 6. Internal choice has been provided for certain questions.

Section A (1 mark each)								
Q.1.	Wh	Which of the following is not the graph of a quadratic polynomial?						
	Α		В		С		D	
	Ans: (C)							
Q.2.	The value of k for which the lines $(k + 1)x + 3ky + 15 = 0$ and $5x + ky + 5 = 0$ are coincident is							
	Α	14	В	-14	C	2	D	-2
	Ans: (A) 14							
Q.3.	The LCM of the smallest two-digit number and the largest multiple of 6 which is less than 50 is							
	Α	2	В	48	С	120	D	240
	Ans: (D) 240							

Q.4.	If zeroes of the polynomial $x^2 + ax - b$ are reciprocal of each other, then b is equal to							
	Α	-1	в	1	с	а	D	$\frac{1}{a}$
	An	Ans: (A) -1						
Q.5.	The pair of equations $4x + 6y = 9$ and $2x + 3y = 6$ have							
	Α	many solutions	В	two solutions	С	no solution	D	one solution
	Ans: (C) no solution							
Q.6.	If HCF (a, b) = 12 and $a \times b = 1800$, then LCM of (a, b) is							
	Α	170	В	150	С	120	D	180
	Ans: (B) 150							
Q.7.	<i>Statement A (Assertion):</i> $p(x) = 4x^3 - x^2 + 3x - 2^4$ is a polynomial of degree 4.							
	Statement R (Reason): The highest power of x in the polynomial $p(x)$ is the degree of the							
	polynomial.							
	Ans: (d) Assertion (A) is false but reason (R) is true.							
				Section B (2 m	narks	each)		
8.	$615 - 6 = 609; 963 - 6 = 957$ $(\frac{1}{2})$							$(\frac{1}{2})$
	$615 - 6 = 609; 963 - 6 = 957$ $(\frac{1}{2})$ $609 = 3 \ge 7 \ge 29$ $(\frac{1}{2})$ $957 = 3 \ge 11 \ge 29$ $(\frac{1}{2})$ HCF (609, 957) = $3 \ge 29 = 87$ $(\frac{1}{2})$							
	$957 = 3 \times 11 \times 29$ $(\frac{1}{2})$							
9.	$\alpha + \beta = \frac{-11}{2}, \ \alpha\beta = \frac{5}{2} \tag{(\frac{1}{2})}$							
	$2\alpha + 2\beta = 2(\alpha + \beta) = 2 \times \frac{-11}{2} = -11$ (1/2)							
	$ \begin{array}{l} \alpha + \beta = \frac{-11}{2}, \ \alpha\beta = \frac{5}{2} \\ 2\alpha + 2\beta = 2 \ (\alpha + \beta) = 2 \ x \frac{-11}{2} = -11 \\ 2\alpha \ x \ 2\beta = 4 \ \alpha\beta = 4 \ x \frac{5}{2} = 10 \\ \text{So, the required quadratic polynomial is } x^2 + 11x + 10. \end{array} $							
	4							
	OR Given $\alpha + \beta = \frac{1}{2} \alpha \beta$							
							$\left(\frac{1}{2}\right)$	
	$ \begin{aligned} k - 3 &= \frac{1}{2} \times 2 (3k - 4) \\ k - 3 &= 3k - 4 \\ 3k - k &= -3 + 4 \\ 2k &= 1; \ k &= \frac{1}{2} \end{aligned} $ $(\frac{1}{2})$							
	3k	3k - k = -3 + 4 (1/2)						
	$2k = 1; k = \frac{1}{2}$ ($\frac{1}{2}$)							

Q.10.	Adding the equations, $234x + 234y = 234 \Rightarrow x + y = 1$	$(\frac{1}{2})$					
	Subtracting the equations, $48x - 48y = 144 \Rightarrow x - y = 3$	$\left(\frac{1}{2}\right)$					
	By elimination, $x = 2$, $y = -1$	$(\frac{1}{2}+\frac{1}{2})$					
Section C (3 marks each)							
11.	Assume that $3 + 5\sqrt{2}$ is rational.	(1)					
	Arrives at contradiction since LHS and RHS are not equal.	(1)					
	Hence conclude that $3 + 5\sqrt{2}$ is irrational.	(1)					
12.	$5x^2 - 8x - 4 = 5x^2 - 10x + 2x - 4$						
	= 5x(x-2) + 2(x-2)						
	=(x-2)(5x+2)	$(1\frac{1}{2})$					
	the zeroes of $5x^2 - 8 - 4$ are 2 and $\frac{-2}{5}$.						
	3	$\left(\frac{1}{2}\right)$					
	Now, sum of zeroes = $2 + (\frac{-2}{5}) = \frac{8}{5} = \frac{-b}{a}$	$(\frac{1}{2})$					
	product of zeroes = $2 \times (\frac{-2}{5}) = \frac{-4}{5} = \frac{c}{a}$						
	Hence verified.	$(\frac{1}{2})$					

13.	Graph	(2)				
	Solution is (3, 2)	$(\frac{1}{2})$				
	Area = 7.5 sq.units	$(\frac{1}{2})$				
	OR					
	(x-2)/(y+1) = 1/2	$(\frac{1}{2})$				
	2x -y = 5(i)	$(\frac{1}{2})$				
	(x+4)/(y-3) = 3/2	$(\frac{1}{2})$				
	2x - 3y = -17(2)	$(\frac{1}{2})$ $(\frac{1}{2})$				
	Solving eqns (1) and (2), we get $x = 8$ and $y = 11$	$(\frac{1}{2})$				
	The required fraction is $\frac{8}{11}$	$(\frac{1}{2})$				
	Section D (4 marks each)					
14.	<u>Case study-based – 1</u>					
	(i) $3x + y = 1600; 5x + 2y = 2900$	$(\frac{1}{2} + \frac{1}{2})$				
	(ii) Consistent	(1)				
	(iii) $x = 300, y = 700$	(1+1)				
	OR					
	Cost of 5 chairs = ₹ 1500	(2)				
15.	<u>Case study-based – 2</u>					
	(i) $135 = 3^3 \times 5$ (ii) HCF (135, 225) = 45 (iv) $\frac{135+225}{45} = 8$ rows	(1) (1) (1+1)				
	OR $360 = 2^3 \times 3^2 \times 5$	$(1\frac{1}{2})$				
	Sum of exponents $= 6$	$(1\frac{1}{2})$ $(\frac{1}{2})$				