0

Class: X

INDIAN SCHOOL AL WADI AL KABIR

Pre-Mid-Term Examination (2024-25) Sub: MATHEMATICS (041)

Date:28 - 05 - 2024

Max Marks: 30 Time: 1 hour

Marking Scheme

Section A (1 mark each)									
Q.1.	If α and β are the zeros of a polynomial $f(x) = px^2 - 2x + 3p$ and $\alpha + \beta = \alpha\beta$, then p is:								
	A	$\frac{-2}{3}$	В	$\frac{2}{3}$	С	$\frac{1}{3}$	D	$\frac{-1}{3}$	
Q.2.	Given that HCF (120, 160) = 40, find the LCM (120, 160).								
	Α	480	В	280	С	48	D	28	
Q.3.	The pair of equations $x + 2y + 5 = 0$ and $3x - 6y + 1 = 0$ have:								
	Α	infinitely many solutions	В	exactly two solutions	С	unique solution	D	no solution	
Q.4.	Let a and b be two positive integers such that $a = p^3q^4$ and $b = p^2q^3$, where p and q are prime numbers. If $HCF(a,b) = p^mq^n$ and $LCM(a,b) = p^rq^s$, then $(m+n)(r+s)$ equals:								
	Α	15	В	30	С	35	D	72	
Q.5.	The pair of equations $x = a$ and $y = b$ graphically represents lines which are:								
	A	parallel	В	intersecting at (b, a)	С	coincident	D	intersecting at (a, b)	
Q.6.	The	The quadratic polynomial p(x) with -24 as the product of its zeroes and 4 as one of its zeroes is:							
	A	$x^2 - 2x - 24$	В	$x^2 + 2x - 24$	С	$x^2 + 2x + 24$	D	$x^2 - 4x - 24$	

Q.7.	(b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A).						
Section B (2 marks each)							
Q.8.	$p(x) = 4x^{2} - 15x + 9$ $sum = -15, product = 36$ $4x^{2} - 12x - 3x + 9 = 4x(x - 3) - 3(x - 3)$ $= (x - 3)(4x - 3)$ $(x - 3)(4x - 3) = 0$ $x - 3 = 0, x = 3$	1/2m 1/2m 1/2m					
	$4x - 3 = 0, x = \frac{3}{4}$	1/2 m					
Q.9.	32x + 33y = 34(i) 33x + 32y = 31 (ii) Adding the equations, $65x + 65y = 65$, $x + y = 1$ (iii) Subtracting the equations, $x - y = -3$ (iv) Solving (iii) and (iv), $2x = -2$, $x = -1$, y = 2	1m 1/2m					
Q.10.	If the number 6^n , for any n , were to end with the digit zero, the prime factorisation of 6^n would contain both the primes 2 and 5. This is not possible because $6^n = (2 \times 3)^n$; So the only primes in the factorisation of 6^n is 2 and 3 and not 5. The uniqueness of the Fundamental Theorem of Arithmetic guarantees that there a other primes in the factorisation of 6^n . So, there is no natural number n for which 6^n ends with the digit zero.						

LCM(25, 40, 60)

$$25 = 5^2$$

$$40 = 2^3 \times 5$$

$$60 = 2^2 \times 3 \times 5$$

$$LCM(25, 40, 60) = 2^3 \times 5^2 \times 3 = 600$$

Smallest number = 600 + 7 = 607

1/2m

1m

1/2m

Section C (3 marks each)

Q.11.

Drawing correct graphs

$$(2 \frac{1}{2} \text{m})$$

Solution(1/2 m)

Q.12.

Let $5 + 2\sqrt{3}$ be rational.

 $5 + 2\sqrt{3} = \frac{a}{b}$, a and b are coprime and $b \neq 0$

(1/2m)

(1/2m)

	$2\sqrt{3} = \frac{a}{5} - 5$	(1/2m)						
	$2\sqrt{3} = \frac{a}{b} - 5$ $\sqrt{3} = \left(\frac{a}{b} - 5\right) \times \frac{1}{2}$	(1/2m) (1/2m)						
	$\sqrt{3} = \left(\frac{a}{b} - 5\right) \times \frac{1}{2}$	(1/2 m)						
	LHS= rational, RHS = irrational, LHS ≠ RHS	(1/2 111)						
	Our assumption $5 + 2\sqrt{3}$ be rational is not correct.	(1/2 m))						
	Therefore $5 + 2\sqrt{3}$ is irrational.	(-1-111)						
OR.								
	10100 22.22.5.101	(1m)						
	$18180 = 2^2 \times 3^2 \times 5 \times 101$	(1 m)						
	$7575 = 3 \times 5^2 \times 101$							
	LCM(18180, 7575) = 90900	(1/2 m)						
	HCF(18180, 7575) - 1515	(1/2 m))						
	HCF(18180, 7575) = 1515							
Q.13.	Let Father's age be x yrs and son's age be y yrs.	(1/2 m)						
	x = 6y(i)	(1/2 m)						
	x+4=4(y+4)	(1/2 m)						
	x + 4 = 4y + 16							
	x - 4y = 12(ii)	(1/2 m)						
	Solving (i) and (ii),	(1/2 m)						
	y = 6 and $x = 36$	(1/2 m)						
	The age of son is 6 years and that of father is 36 years.							
Section D (4 marks each)								
Q.14.	(i) 2 zeroes. (1m)							
	(ii) $p(x)=x^2-2x-3$ (1m)							
	(iii) (a) Sum of the zeroes = $-1 = -(a + 1)$ (1/2m)							
	a = 0 (1/2m)							
	Product of the zeroes = $b = -6$ (1m)							

