

INDIAN SCHOOL AL WADI AL KABIR

Midterm Examination 2023-24

SUB: Mathematics - Set 2

Date: 21/09/2023

Time Allowed :3 hours

Maximum Marks: 80

Class: X

General Instructions:

1. This Question Paper has 5 Sections A, B, C, D, and E.

2. Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.

3. Section B has 5 Short Answer-I (SA-I) type questions carrying 2 marks each.

4. Section C has 6 Short Answer-II (SA-II) type questions carrying 3 marks each.

5. Section D has 4 Long Answer (LA) type questions carrying 5 marks each.

6. Section E has 3 Case Based integrated units of assessment (4 marks each) with

sub-parts of the values of 1, 1 and 2 marks each respectively.

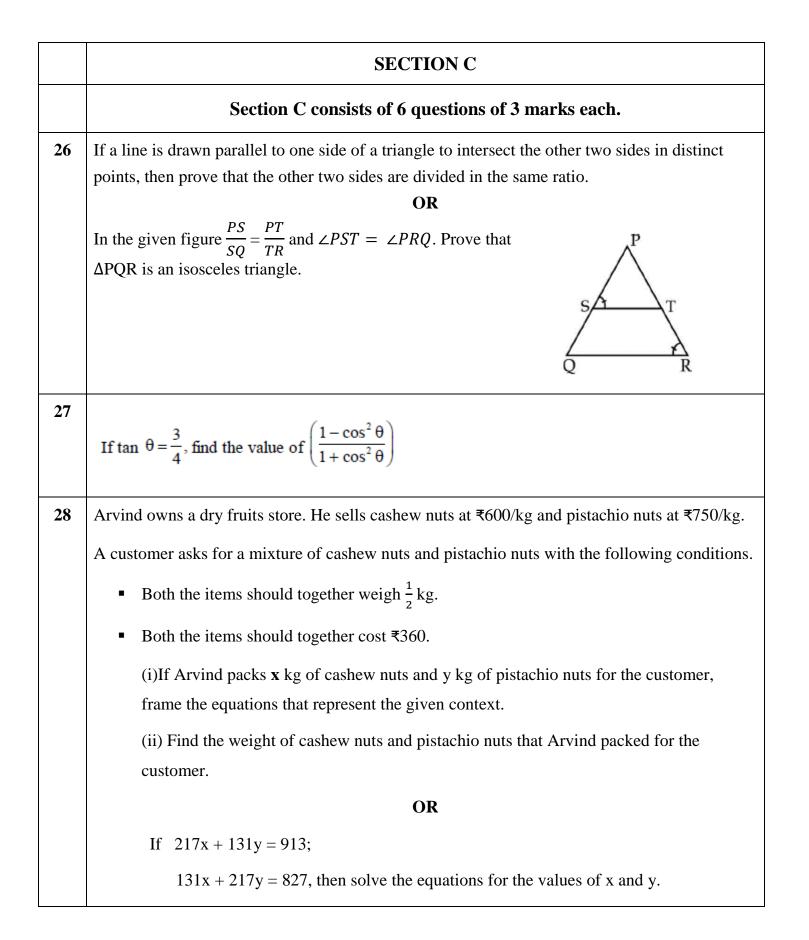
7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of

3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.

8. Draw neat figures wherever required.

				SECTIO	NA					
		Secti	on A consis	ts of 20 que	estions of 1	mark eac	ch.			
1	The value(s) of x, if the distance between the points $A(0, 0)$ and $B(x, -4)$ is 5 units is:									
	(A)	± 4	(B)	±3	(C)	<u>+</u> 2	(D)	<u>+</u> 1		
2	In $\triangle ABC$ and $\triangle DEF$, $\frac{AB}{DE} = \frac{BC}{FD}$. Which of the following makes the two triangles similar?									
	(A)		$\angle A = \angle D$		(B)		$\angle B = \angle D$			
	(C)		$\angle B = \angle E$		(D)		$\angle A = \angle F$			
3	M and M	N are positive	integers suc	h that M =	p ² q ³ r and N	$= p^3 q^2$, w	here p, q ar	nd r are prime		
	numbers	. The HCF (N	(I, N) is:							
	(A)	p ³ q ³ r	(B)	p ³ q ³	(C)	p^2q^2	(D)	pqr		

ISWK/CLASS X/QUESTION PAPER-SET 2/MIDTERM EXAMINATION (2023_2024)


4	If α and β							
	(A)	10	(B)	$\frac{37}{4}$	(C)	$\frac{23}{2}$	(D)	37
5	If $\sin A = \frac{1}{2}$	$\frac{1}{2}$, then th	e value of co	ot A is:				
	(A)	$\sqrt{3}$	(B)	$\frac{1}{\sqrt{3}}$	(C)	$\frac{\sqrt{3}}{2}$	(D)	1
6	Consider t	he follow	ing distribution	on:				
	Classes		0-5	5-10	10-15		15-20	20-25
	Frequenc	У	10	15	12		20	9
	The sum o	f the lowe	er limit of the	e modal class and	d upper lin	nit of med	ian class is:	
	(A)	20	(B)	25	(C)	30	(D)	35
7	Graphicall	y the pair	of equations	: $-6x - 2y = 21$	and 2x - 3	3y + 7 = 0	represents t	wo lines
7	Graphicall which are: (A)		of equations		and 2x - 3	-	_	wo lines at two points
7	which are:		-	t one point		-	_	at two points
8	which are: (A) (C)	intersect	ting exactly a coincident	t one point	(B) (D)	intersecti	ng exactly a parallel	at two points
	which are: (A) (C)	intersect	ting exactly a coincident	t one point	(B) (D)	intersecti	ng exactly a parallel	at two points
	 which are: (A) (C) Two legs A (A) (A) Leela has a staircase. The total has a staircase. The t	intersect AB and B $\sqrt{10}$ a triangula There are re. height of t imum hei	ting exactly a coincident C of right tria (B) ar cabinet tha 4 parallel she he cabinet is	at one point angle ABC are it $\frac{1}{\sqrt{10}}$ at fits under her elves as shown 144 cm. What that can stand	(B) (D) n the ratio	intersecti 1:3. The v 3	ng exactly a parallel value of sin o	at two points C is: $\frac{1}{2}$

ISWK/CLASS X/QUESTION PAPER-SET 2/MIDTERM EXAMINATION (2023_2024)

10	If one ro t is:	oot of the equa	ation $2x^2 - 5x$	x + (t - 4) = 0) be the recip	procal of t	he other, the	en the value of
	(A)	5	(B)	4	(C)	6	(D)	8
11	If the me	ean and the m	edian of a da	ata are 12 and	15 respectiv	vely, then	its mode is:	
	(A)	13.5	(B)	21	(C)	6	(D)	14
12	If AB is	a chord of a c	circle with ce	entre at O(2, 3	3), where the	coordinat	es of A and	B are (4, 3)
	and $(x, 5)$	5) respectively	, then the va	lue of x is :				
	(A)	3	(B)	2	(C)	5	(D)	4
13		-	_	near equations		ables and	found their o	only point of
				ines was x – j				
			ig could have	e been the oth	er line?			
	I: 3x – 3	y = 15						
	II: $2x - 3$	3y = 12						
	III: 2x –	3y = 14						
	(A)	Only I	(B)	Only II	(C) 0	only I and I	II (D) C	Only II and III
14	In the gi is:	ven figure, A	B∥ PQ. If A	$\mathbf{B}=6\ \mathrm{cm,\ PQ}$	$\mathbf{p} = 2 \text{ cm and}$	OB = 3cn	n, then the le	ength of OP
	15.				B			
						Q		
				= t				
				9				
				V				
		-		_				
	(A)	9 cm	(B)	3 cm	(C)	4 cm	(D)	1cm

15	Which	of the following	is a quad	ratic polynomia	l with zer	$\cos \frac{5}{3}$ and 0?		
	(A)	3x(3x - 5)	(B)	3x(x – 5)	(C)	$x^2 - \frac{5}{3}$	(D)	$\frac{5}{3}x^2$
16	If $p^2 =$	$\frac{32}{50}$, then p is/an a	1:					
	(A)	whole number	(B)	integer	(C)	rational number	(D)	irrational number
17	If the I	HCF of 360 and 6	4 is 8, the	en their LCM is	:			
	(A)	2480	(B)	2780	(C)	512	(D)	2880
18		-1) (1- $\csc^2 \theta$) i $\frac{1}{1}$ ion for questions	•					
	(a) Botassertion(b) Botassertion	th assertion (A) a	nd reason	n (R) are true an n (R) are true an	d reason ((R) is the cor	-	
		sertion (A) is fals						
19		tion(A): The num n(R): Prime facto			C		natural n	umber.
20	Assert	ion(A) : If in a ∆	ABC, a l	ine DE ∥BC in	tersects A	B in D and A	AC in E, t	hen $\frac{AB}{AD} = \frac{AC}{AE}$.
		n(R) : If a line is c inct points, then the	-			-	-	ther two sides

			ļ	SECTION B	3				
		Sectior	B consists	of 5 question	ns of 2 mark	s each.			
21	Points A(3, 1)	, B(5, 1), C(a	, b) and D(4, 3	3) are vertices	of a parallelo	gram ABCD.	Find the		
	values of a an	d b.							
	OR								
	Points P and Q trisect the line segment joining the points $A(-2, 0)$ and $B(0, 8)$ such that P is								
	near to A. Find the coordinates of points P and Q.								
22	If $cos(A - B) = \frac{\sqrt{3}}{2}$ and $sin(A + B) = \frac{\sqrt{3}}{2}$, find A and B where $(A + B)$ and $(A - B)$ are acute								
	angles.								
23	Write a quad	lratic polynon	nial whose zer		$2\sqrt{2}$) and (3 -	2√ <u>2</u>).			
				OR 1					
	If one zero of	the polynomi	al $2x^2 + 3x +$	m is $\frac{1}{2}$, find the function of $\frac{1}{2}$ is $\frac{1}{2}$.	he value of n	n and the othe	er zero.		
24	In the followi	ng cumulative	frequency ta	ble, find the v	values of a, b,	c and d .			
	Class	0-10	10-2	20 20)-30	30-40	40-50		
	Frequency	5	7		a	5	b		
	Cumulative frequency	5	c	c 18		d	30		
				OR					
	If the mean of	the following	g distribution	is 7.5, find the	e value of p.				
	Class 2-4 4-6 6-8 8-10 10-12 12-14								
	Frequency	6	8	15	р	8	4		
25	For what valu	e of k, does th	ne system of li	inear equation	18				
				2x + 3y = 7					
			(k – 1) $x + (k + 2) y$	y = 3k				
	have an infini	te number of	solutions?						

29	The distribution below gives the weights of 30 students of a class. Find the median weight of a student.										
	Weight (in kg)	40-45	45-50	50-55	55-60	60-65	65-70	70-75			
	No. of students	2	3	8	6	6	3	2			
30	Find the zeroes of the quadratic polynomial $6x^2 + x - 12$ and verify the relationship between the zeroes and the coefficients of the polynomial.										
31	Prove that 2	$-3\sqrt{5}$ is an	irrational n	umber, give	n that $\sqrt{5}$ is	an irrational	number.				
	SECTION D										
	Section D consists of 4 questions of 5 marks each.										
32	Solve the following pair of equations graphically: $3x + y - 5 = 0$; $2x - y - 5 = 0$										
	Find the area	of the triar	igle formed	by these tw	o lines and Y	r axis.					
33	Find the ratio in which the y -axis divides the line segment joining the points (-1, -4) and										
	(5, -6). Also find the coordinates of the point of intersection.										
	OR										
	The vertices of quadrilateral ABCD are $A(5, -1)$, $B(8, 3)$, $C(4, 0)$ and $D(1, -4)$.										
	Prove that ABCD is a rhombus and find the area of the rhombus.										
34	A survey regarding the heights (in cm) of 50 girls of class X of a school was conducted and the following data was obtained:										
	Height(cm)	120-	130	130-140	140-150	150	-160	160-170			
	No. of girls	2	2	8	12	2	20	8			
	Find the mea	in and mode	e of the data	ι.	<u> </u>	I					

35	Evaluate	e the following:							
	$2\cos^2 60^\circ + 3\sec^2 30^\circ - 2\tan^2 45^\circ$								
		$sin^2 30^\circ + cos^2 45^\circ$							
		OR							
	Prove th	at:							
		$(sin\theta + cosec\theta)^2 + (cos\theta + sec\theta)^2 = 7 + tan^2\theta + cot^2\theta$							
		SECTION E							
		Case Study Based Questions are compulsory.							
36	Case St	udy -1							
	Jagdish	has a field which is in the							
	shape of	a right-angled triangle							
	AQC. H	e wants to leave a space in							
	the form	of a square PQRS inside							
	the field	for growing wheat and the							
	remainin	ng for growing vegetables							
	(as show	<i>n</i> in the figure). In the							
	field, the	ere is a pole marked as O. $\begin{array}{c c} x' & C & F \\ \hline x' & C & (-200, 0) \\ \hline \end{array} $	→x						
	Based on the above information								
	answer the following questions.								
	I Taking O as origin, coordinates of P are $(-200, 0)$ and of Q are $(200, 0)$.								
		PQRS being a square, what are the coordinates of R and S?							
	II	If S divides CA in the ratio k:1, what is the value of k, where point A is							
		(200, 800)?							
	III What is the area of square PQRS?								
		OR							
		What is the length of diagonal PR in square PQRS?							

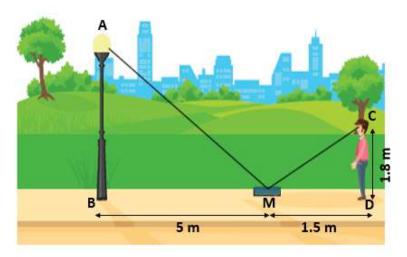

Case Study – 2

37

February 14 is celebrated as International Book Giving Day and many countries in the world celebrate this day. Some people in India also started celebrating this day and donated the following number of books of various subjects to a public library:

History = 96, Science = 240, Mathematics = 336.

These books have to be arranged in minimum number of stacks such that each stack contains books of only one subject and the number of books on each stack is the same.


Based on the above information answer the following questions.

Ι	How many books are arranged in each stack?	1m
II	How many stacks are used to arrange all the Mathematics books?	1m
III	Determine the total number of stacks that will be used for	2m
	arranging all the books.	
	OR	
	If the thickness of each book of History, Science and Mathematics is	
	1.8 cm, 2.2 cm and 2.5 cm respectively, then find the height of each	
	stack of History, Science and Mathematics books.	

Case Study -3

Ramesh places a mirror on level ground to determine the height of a pole (with traffic light fired on it). He stands at a certain distance so that he can see the top of the pole reflected from the mirror. Ramesh's eye level is 1.8 m above the ground.

The distance of Ramesh from mirror and that of building from mirror are 1.5 m and 5 m respectively.

Based on the above information answer the following questions.

Ι	Name the similar triangles from the figure.	1m
II	Which similarity criterion is applied here?	1m
III	Find height of the pole.	2m
	OR	
	Now Ramesh move behind such that distance between pole and	
	Ramesh is 13 meters. He places mirror between him and pole to see	
	the reflection of light in right position. What is the distance between	
	mirror and Ramesh?	
