Class: XI
Date: 23.05.2023

Sub: MATHEMATICS (041)
SET-2

Max Marks: 30
Time: 1 hr

1	c) $229^{\circ} 10^{\prime} 59^{\prime \prime}$	2	d) $4: 3$	3	a) 2
4	c) $\frac{1}{2}$	5	c) 4	6	a) $\{16,17,18, \ldots . .25\}$
7	(A) Both A and R are true and R is the correct explanation of A				
8	It is given that the number of subsets of a set containing m elements is 112 more than the number of subsets of set containing n elements. $\begin{aligned} & 2^{\mathrm{m}}-2^{\mathrm{n}}=112 \\ & =2^{\prime \prime}\left(2^{\mathrm{m}-\mathrm{n}}-1\right)=2 \times 2 \times 2 \times 2 \times 7 \\ & =2^{\prime \prime}\left(2^{\mathrm{m}-\mathrm{n}}-1\right)=2^{4}\left(2^{3}-1\right) \\ & \mathrm{n}=4 \text { and } \mathrm{m}-\mathrm{n}=3 \\ & . . \mathrm{m}-4=3 \quad \rightarrow \mathrm{~m}=7 \end{aligned}$ The values of m and n are 7 and 4 , respectively.				
9	Radius of circle $=2 \mathrm{~cm}$ In 60 seconds, angle covered by second hand is 360° In 40 seconds, angle covered by second hand is $360^{\circ} \times \frac{4}{6}=240^{\circ}$ Angle=Arc length / Radius Arc length $=\frac{8 \pi}{3}=12.56 \mathrm{~cm}$.				
	- OR -$\begin{aligned} & 3 x=2 x+x \\ & \tan 3 x=\tan (2 x+x) \\ & \tan 3 x=\frac{\tan 2 x+\tan x}{1-\tan 2 x \cdot \tan x} \\ & \tan 3 x-\tan 3 x \tan 2 x \tan x=\tan 2 x+\tan x \\ & \tan 3 x-\tan 2 x-\tan x=\tan 3 x \tan 2 x \tan x \end{aligned}$				
10	$\begin{aligned} & \frac{x}{3}+1=\frac{5}{3} \rightarrow \mathrm{x}=2 \\ & y-\frac{2}{3}=\frac{1}{3} \rightarrow \mathrm{y}=1 \end{aligned}$				
11	$\begin{aligned} & y=\frac{3}{2-x^{2}} \\ & \Rightarrow 2-x^{2}=\frac{3}{y} \\ & \Rightarrow x^{2}=2-\frac{3}{y} \\ & \text { But } x^{2} \geq 0 \quad \text { So } 2-\frac{3}{y} \geq 0 \end{aligned}$			$\begin{aligned} & \Rightarrow \frac{2 y-3}{y} \geq 0 \\ & \Rightarrow y>0 \text { and } 2 y \geq 3 \\ & \Rightarrow y>0 \text { and } y \geq \frac{3}{2} \\ & \text { range of } f=(-\infty, 0) \cup\left[\frac{3}{2}, \infty\right) \end{aligned}$	

12	$\begin{aligned} & \cos ^{2} \frac{\pi}{8}+\cos ^{2} \frac{3 \pi}{8}+\cos ^{2} \frac{5 \pi}{8}+\cos ^{2} \frac{7 \pi}{8} \\ & =\frac{1+\cos \frac{2 \pi}{8}}{2}+\frac{1+\cos \frac{6 \pi}{8}}{2}+\frac{1+\cos \frac{10 \pi}{8}}{2}+\frac{1+\cos \frac{14 \pi}{8}}{2} \\ & =\frac{1+\cos \frac{2 \pi}{8}}{2}+\frac{1+\cos \left(\pi-\frac{2 \pi}{8}\right)}{2}+\frac{1+\cos \left(\pi+\frac{2 \pi}{8}\right)}{2}+\frac{1+\cos \left(2 \pi-\frac{2 \pi}{8}\right)}{2} \\ & =\frac{1+\cos \frac{2 \pi}{8}}{2}+\frac{1-\cos \frac{2 \pi}{8}}{2}+\frac{1-\cos \frac{2 \pi}{8}}{2}+\frac{1+\cos \frac{2 \pi}{8}}{2} \\ & =2 \times \frac{1+\cos \frac{2 \pi}{8}}{2}+2 \times \frac{1-\cos \frac{2 \pi}{8}}{2}=1+\cos \frac{2 \pi}{8}+1-\cos \frac{2 \pi}{8} \\ & =2 \end{aligned}$
	- OR- $\begin{aligned} & \sqrt{2+\sqrt{2+2 \cos 4 x}} \\ & =\sqrt{2+\sqrt{2(1+\cos 4 x)}} \\ & =\sqrt{2+2 \sqrt{\cos ^{2} 2 x}} \end{aligned}$ $=\sqrt{2+2 \cos 2 x}$ $=2 \sqrt{\cos ^{2} x}$ $=2 \cos x$
13	Let $x=\frac{\pi}{8}$. Then $2 x=\frac{\pi}{4}$. $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$ $\tan \frac{\pi}{4}=\frac{2 \tan \frac{\pi}{8}}{1-\tan ^{2} \frac{\pi}{8}}$ Let $y=\tan \frac{\pi}{8}$. Then $1=\frac{2 y}{1-y^{2}}$ $\begin{aligned} & y^{2}+2 y-1=0 \\ & y=\frac{-2 \pm 2 \sqrt{2}}{2}=-1 \pm \sqrt{2} \end{aligned}$ Since $\frac{\pi}{8}$ lies in the first quadrant, $y=\tan \frac{\pi}{8}$ is positve. $\tan \frac{\pi}{8}=\sqrt{2}-1$
14	(i) 8 (ii) $\mathrm{D}_{f}=\mathrm{R}-\{2,6\}$ (iii) $[-3,3]$ OR $(-\infty, 3] U[3, \infty)$
15	(i) $(-4,6]$ (ii) $\mathrm{A} U(\mathrm{~B} \cap \mathrm{C})=\{1,2,3,4,5,6\}$ (iii) $\mathrm{n}(\mathrm{S})+\mathrm{n}(\mathrm{P})=11 \quad-$ OR- $\mathrm{R}_{f}=[0,1)$

