			INDIAN SCHOOL AL WADI AL KABIR Class XII, Mathematics Worksheet 1-Relations 05-04-2022						
Q.1.	For real numbers x and y define $x R y$ if and only if $x-y+\sqrt{3}$ is an irrational number. Then the relation R is								
	A	reflexive	B	symmetric		C	transitive	D	none of these
Q.2.	The relation R in \boldsymbol{R} defined by $\mathrm{R}=\left\{(a, b): a \leq b^{3}\right\}$. Then R is								
	A	Reflexive but not symmetric	B	Symmetric but n symmetric		C	reflexive but not transitive	D	None of these
Q.3.	Let R be the relation in the set $\{1,2,3,4\}$ given by $R=\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$, then R is								
	A	Reflexive and symmetric but not transitive	B	Reflexive and transitive but no symmetric		C	Transitive and symmetric but not reflexive	D	an equivalence relation
Q.4.	The number of all reflexive relations from set $A=\{1,2,3\}$ to itself is								
	A	3	B	9		C	64	D	512
Q.5.	Let $R=\{(1,3),(2,2),(3,2)\}$ is a relation defined on $A=\{1,2,3\}$, then minimum ordered pairs which should be added in relation R to make it reflexive and symmetric are								
	A $\{(1,1),(2,3),(1,2)\}$				B	\{(3	3), (3,1), (1, 2) \}		
	C $\{(1,1),(3,3),(3,1),(2,3)\}$			D $\{(1,1),(3,3),(3,1),(1$,					
Q.6.	If R be the relation on set $A=\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ then R is								
	A	only reflexive	B	an equivalence relation		C	only symmetric	D	only transitive
Q.7.	Let $A=\{1,2,3\}$ and consider the relation $R=\{(1,2),(2,2),(3,3),(1,2),(2,3),(1,3)\}$ then R is								
	A reflexive but not transitive		B	symmetric and transitive	C	reflexive but not symmetric			None of these
Q.8.	If Relation R in the set Z of all integers defined as $R=\{(x, y): x-y$ is an integer $\}$ then R is								
	A	only a symmetric relation	B	Symmetric and transitive		C	Reflexive and transitive	D	an equivalence relation.

Q.9.	If $\mathrm{R}==\{(a, b): a=b\}$, then R is							
	A	only symmetric	B	Reflexive and symmetric	C	Symmetric and transitive	D	an equivalence relation
Q.10.	If $\mathrm{R}==\{(a, b): a \leq b, a, b$ are real numbers $\}$, then R is							
	A	reflexive and symmetric	B	reflexive and transitive	C	Symmetric and transitive	D	none of these
Q11.	Let $A=\{1,2,3,4,5,6,7\}$ and R be a relation in $A \times A$ is defined by $a+d=b+c$ for all $(a, b),(c, d) \in A \times A$. Prove that R is an equivalence relation. Hence obtain the equivalence class of $(2,5)$.							
Q12.	Let T be the set of all triangles in a plane with R a relation in T given by $\mathrm{R}=\{(T 1, T 2): T 1$ is isimiar to $T 2\}$. Show that R is an equivalence relation.							
Q13.	Let L be the set of all lines in a plane and R be the relation in L defined as $\mathrm{R}=\{(L 1, L 2): L 1 \perp L 2\}$. Show that R is symmetric but neither reflexive nor transitive.							
Q14.	Let the relation R be defined on the set $\mathrm{A}=\{1,2,3,4,5\}$ by $\mathrm{R}=\left\{(\mathrm{a}, \mathrm{b}):\left\|a^{2}-b^{2}\right\|<8\right.$. Write the relation R . Also verify whether the relation is reflexive, symmetric and transitive							
Q15.	Prove that the relation R on the set NXN defined by $(a, b) R(c, d)$, iff $a d=b c$, for all $(a, b),(c, d) \in N X N$ is an equivalence relation.							
Q16.	Show that the relation R defined on set $A=\{0,1,2,3, \ldots .12\}$ $\mathrm{R}=\{(a, b):\|a-b\|$ is diivisible by $4 ; a, b \in A\}$ is an equivalence relation							
	1.	A	2.	D	3.	B	4.	D
	5.	C	6.	C	7.	B	8.	D
	9.	D	10	B	11	$\begin{aligned} & {[(2,5)]=} \\ & \{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)\} \end{aligned}$		

