

INDIAN SCHOOL AL WADI AL KABIR

Dept. of Mathematics 2024 – 2025

Class XII – Mathematics Work Sheet – Determinants 1

		Work Sheet – De	eterminants 1	
1	If A and B are square mat to	trices of order 3 sucl	that $ A = -1, B =$	= 3, then $\det(3 AB)$ is equal
	(a) -9 (b)	- 27 (c)	- 81	(d) 81
2	If a, b, c are distinct, then	the value of <i>x</i> satisf	$ ying \begin{vmatrix} 0 & x^2 - a \\ x^2 + a & 0 \\ x^4 + b & x - c \end{vmatrix} $	
	(a) c (b)	a (c)) b	(d) 0
3	The equations $x + y = 2$, 2 (a) no solution (c) finitely many more that	(b)	a unique solution infinitely many so	lutions
4	 Which of the following is not correct in a given determinant of A, where A = [a_{ij}]_{3×3} (a) Order of minor is less than order of the det (A) (b) Minor of an element can never be equal to cofactor of the same element (c) Value of a determinant is obtaind by multiplying elements of a row or column by corresponding cofactors. (d) Order of minors and cofactors of elements of A is same 			
5	If A and B are square mat (a) $\lambda \det A$ (b)	rix of order n , then (c)	_	being a scalar) (d) None of these
6	If A and B are square mat (a) $\det(A) = 0$ or $\det(B) = 0$ (c) $\det(A) = 0$ and $\det(B) = 0$	=0 (b)	det $(A+B) = 0$ is pos det $(A) + \det(B) = 0$ A+B=0	-
7	If A is square matrix such (a) I (b)		is equal to A	(d) I+A
8	If $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ and		a_{ij} in A , then the value	e of A is given by
	(a) $a_{11}c_{31} + a_{12}c_{32} + a_{13}c_{33}$ (c) $a_{21}c_{11} + a_{22}c_{12} + a_{23}c_{13}$) }	$\begin{array}{l} (b)a_{11}c_{11} + a_{12}c_{21} + a_{12}c_{21$	

If A is square matrix of order 2, then $\det(adj A) =$ (c) $(\det A)^2$ (b) det A (d) None of these (a) I If A is non-singular matrix of order 3, then adj(adj A) =10 (a) I (b) |A|I (c) A (d) $(\det A)A$ If A is any of square matrix of order n, then A (adj A) is equal to 11 (d) |A|ⁿ (a) I (b) $|A|I_n$ (c) 0 12 A square matrix A is invertible iff det A is equal to (a) 0 (b) 1 (c) non-zero (d) −1 If A, B, C, are three square matrices of the same order such that A = B + C, then det A is 13 equal to (a) $\det B + \det C$ (b) $\det B$ (c) det C (d) None of these The value of det $\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ is equal to 14 (a) cos2θ (b) 1 (c) 0 (d) None of these 15 Which of the following is not correct? (a) $|A| = |A^T|$, where $A = [a_{ii}]_{3 \times 3}$ (b) $|KA| = K^3 |A|$, where $A = [a_{ii}]_{3 \times 3}$ (c) If A is a skew-symmetric matrix of odd order, then |A| = 0 $\begin{vmatrix} a+b & c+d \\ e+f & g+h \end{vmatrix} = \begin{vmatrix} a & c \\ e & g \end{vmatrix} + \begin{vmatrix} b & d \\ f & h \end{vmatrix}$ Determinant of the matrix A = [1 - 3 - 5] is 16 (a) 1+3+(-5) (b) $1\times 3\times (-5)$ (c) not defined (d) None of these Evaluate the determinant $\Delta = \begin{bmatrix} -1 & 3 & 0 \end{bmatrix}$ 17 18 Find values of x for which

Answers

1	C
5	С
9	В
13	D

2	D
6	D
10	D
14	В

3	A
7	С
11	В
15	D

4	В
8	D
12	C
16	С