

INDIAN SCHOOL AL WADI AL KABIR *Revision Question Paper* Mid-term Examination (2023-24) **Sub: MATHEMATICS**

Date: 10-09-2023 Class: X Time: 3 hours Maximum marks: 80

General Instructions

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Questions of 5 marks,
 - 2 Questions of 3 marks and 2 Questions of 2 marks has been provided.

An internal choice has been provided in the 2 marks questions of Section E

SECTION A

Section A consists of 20 questions of 1 mark each.											
Q.1.	If 3	If $3x = \sec \theta$ and $\frac{3}{x} = \tan \theta$, then $(x^2 - \frac{1}{x^2})$ is equal to									
	Α	3	В	1	С	$\frac{1}{9}$	D	9			
Q.2.	For which value (s) of p, will the lines represented by the following pair of linear equations be parallel. $3x - y - 5 = 0$; $6x - 2y - p = 0$										
	Α	all real values except 10	В	10	С	$\frac{5}{2}$	D	$\frac{1}{2}A$			

Q.3.	If the HCF of 65 and 117 is expressible in the form 65m - 117, then the value of m is									
	A	4	В	2	С	1	D	3		
Q.4.	D٤	and E are respectivel	y the	points on the sides	AB	and AC of a triangle A	ABC	such that		
	$AD = 2 \text{ cm}, BD = 3 \text{ cm}, BC = 7.5 \text{ cm} \text{ and } DE \parallel BC.$ Then, length of DE (in cm) is									
	Α	2.5	В	3	С	5	D	6		
Q.5.	The LCM of smallest two -digit composite number and smallest composite number is									
	A 12 B 4 C 20 D 44									
Q.6.	If the sum of the zeroes of the quadratic polynomial $kx^2 + 2x + 3k$ is equal to their product, then k equals									
	A	$\frac{1}{3}$	В	$-\frac{1}{3}$	с	$\frac{2}{3}$	D	$-\frac{2}{3}$		
Q.7.	The point on the Y-axis which is equidistant from (2, -5) and (-2, 9) is									
	A	(0, 3)	В	(0, 2)	с	(0, 5)	D	(0, -2)		
Q.8.	The the	e coordinates of the pratio 3:1 internally.	point	which divides the l	line s	segment joining the po	oints	(4, -3) and (8,5) in		
	A	(-3, -7)	В	(-7, -3)	с	(3, 7)	D	(7, 3)		
Q.9.	Tw of t	o lines are given to l the second line can b	be int e	ersecting. The equa	ation	of one of the lines is 2	2x -	3y = 7. The equation		
	Α	3x + 4y = 14	В	4x - 6y = -14	C	12x - 18y = 24	D	-12x + 18y = -42		
Q.10.	If c	α and $\frac{1}{\alpha}$ are zeroes of	of $4x$	$x^2 - 17x + k - 4$, the	valu	e of k is				
	A	1	В	3	с	5	D	8		

Q.11.	The	e value	e of mode if th	e me	an and med	ian of t	he di	stribution are 1	4 and 1	5 re	spectively.	
	Α		16	В	17		с	18		D	13	
Q.12.	If s	$\sin \theta =$	$=\frac{a}{b}$, then $\tan \theta$) is ea	qual to							
	A	-	$\frac{b}{\sqrt{a^2+b^2}}$	$\frac{b}{a^2 + b^2} \qquad \mathbf{B} \qquad \frac{b}{\sqrt{b^2 - a^2}}$		с	$\frac{a}{\sqrt{a^2-b}}$	$\frac{a}{\sqrt{a^2 - b^2}}$		$\frac{a}{\sqrt{b^2 - a^2}}$		
Q.13.	Evaluate: $\frac{2 \tan 45^{\circ} \times \cos 60^{\circ}}{\sin 30^{\circ}}$											
	A		$2\sqrt{2}$	В	2		с	1		D	$\frac{1}{2}$	
Q.14.	Find the upper limit of the median class for the given frequency distribution:											
	Class			0 - 5 5 - 2		10	10 - 15 15 - 2		20	20 - 25		
	Frequency		7	8 10		0	19	25		8		
	Α		5	В	10		с	15 D			20	
Q.15.	In t	he giv	en figure, XY	QI	R and $\frac{PX}{XO} =$	$\frac{PY}{YR} = \frac{1}{2}$	$\frac{1}{2}$, the	en				
							P					
						x/	/	Y				
					Q	\square		R				
	A $XY = QR$ B $XY = \frac{1}{3}QR$ C $XY = \frac{2}{3}QR$		D	$XY = \frac{1}{2}$	QR							
Q.16.	If x	x + 2 is	s a factor of x^2	2 + ax	x + 2b and a	+ b = 4	l, the	n				
	A a = 1, b = 3			В	a = 5, b	= -1	с	a = -1, b =	= 5	D	a = 3, b	= 1

Q.17.	The ratio in which X-axis divides the line segment joining A (2, -3) and B (5, 6) is										
	Α	3: 5	В	1:2	С	2: 1	D	2: 3			
Q.18.	The	e coordinates of the	vertic	es of the triangle f	orme	d between the lines ar	nd y-	axis from the graph is			
			Y								
	No per series and a series of the series of										
	3 - 2000 -										
	2-										
			1	S(2, 1)	3.txx	120					
	x = 0 yr = 2 3 5 5 6 x X										
	Δ	(0,5), (0,0)	_	(4,2), (5,0)		(4,2), (0,0)		(0,0), (4,2)			
	A	and (6.5,0)	В	and (6.5,0)	C	and (0,5)	D	and (6.5,0)			
	DIRECTION: In question numbers 19 and 20, a statement of Assertion (A) is followed by										
	stat	tement of Reason (I	R). C	hoose the correct o	ptior	l					
		a) Both Assertion	(A) a	nd Reason (R) are	true a	and Reason (R) is the	corr	ect explanation of			
		Assertion (A)									
		(b) Both Assertion	(A) a	nd Reason (R) are	true a	and Reason (R) is not	the c	correct explanation of			
		Assertion (A)			1						
		(c) Assertion (A) is	true false	but reason (\mathbf{R}) is the but reason (\mathbf{R}) is the but reason (\mathbf{R}) but reason (\mathbf{R}) is the	ise.						
0 19	Sta	toment A (Assertion		r k - 6 the system	of li	near equations $y \pm 2y$	+ 3	-0 and			
Q .10.	514		3x + 3	ky + 6 = 0 inconsis	tent.	near equations x + 2y	15				
	Sta	tement R (Reason).	The	system of linear eq	uatic	ons $a_1\mathbf{x} + b_1\mathbf{y} + c_1 = 0$	and	l			
			a ₂ x +	b_2 y + c_2 = 0 is inc	onsis	stent if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$.					
Q.20.	Sta	tement A (Assertion	a)∙ Tł	e values of x for w	hich	the distance between	the 1	points P $(2, -3)$			
			and	d Q (x, 5) is 10 are	8 and	1 -4.		, <i>S</i>)			
	Sta	tement R (Reason).	The	distance of a point	P (x	, y) from the origin (0	, 0)	is $\sqrt{x^2 + y^2}$.			

	SECTION B								
	Section B consists of 5 questions of 2 marks each.								
Q.21.	Solve: $99x + 101y = 499$; $101x + 99y = 501$								
	OR								
	ABCDE is a pentagon with BE CD and BC DE, BC is perpendicular to CD If the perimeter of								
	ABCDE is 21 cm, find x and y.								
	A								
	3 cm 3 cm								
	B 5 cm E								
	x-y								
	$C \xrightarrow{x+y} D$								
Q.22.	Three bells ring together at intervals of 6, 12 and 18 minutes. If all the three rang at 6 a m, when will								
	they ring together again?								
Q.23									
4:20:	If $\cos A + \cos^2 A = 1$, then find the value of $\sin^2 A + \sin^4 A$								
Q.24	Find a quadratic polynomial, whose zeroes are - 4 and -5 .								
	OR								
	If α and β are the zeroes of the polynomial $x^2 + 2x + 1$, then find the value of $\frac{1}{2} + \frac{1}{2}$								
	If α and β are the zeroes of the porynomial $x^{+} + 2x + 1$, then find the value of $\alpha^{+} \beta^{-}$.								
Q.25.	In the given fig, D and E are points on sides AB and CA of $\triangle ABC$ such that $\angle B = \angle AED$.								
	Show that $\triangle ABC \sim \triangle AED$.								
	·								
	\sim								
	D								
	E								
	B C C								

SECTION C										
	Section C consists of 6 questions of 3 marks each.									
Q.26.	 Grow More Plantations have two rectangular fields of the same width but different lengths. They are required to plant 84 trees in the smaller field and 231 trees in the larger field. In both fields, the trees will be planted in the same number of rows but in different numbers of columns. (i) What is the maximum number of rows that can be planted in this arrangement? (ii) If the trees are planted in the number of rows obtained in (i), how many columns will each field have? 									
Q.27.	The mode of t	he following	frequency dist	ribution is 36.	Find the miss	ing frequency	УX.			
	Classes	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60			
	Frequency	8	5	X	16	12	7			
Q.28.	Find the zeroe and coefficien	es of the polyn	omial $p(x) = 2$	$2x^2 - 7x - 15$	and verify the	relationship b	between zeroes	3		
Q.29.	In the given fi	gure, PA, QB	and RC are al	Il perpendicula $ \frac{1}{y} = \begin{bmatrix} R \\ z \\ - C \end{bmatrix} $	ar to AC. Prov	e that $\frac{1}{x} + \frac{1}{z}$ =	$=\frac{1}{y}$			
			OR							
	ABCD is a tra	pezium in wh	ich AB DC a	and its diagon	als intersect ea	ach other at the	e point O.			
	Show that $\frac{AO}{BO}$	$=\frac{CO}{DO}.$								

Q.30.	Prove: $\frac{\csc^2 \theta}{\csc \theta - 1} - \frac{\csc^2 \theta}{\csc \theta + 1} = 2 \sec^2 \theta$									
Q.31	Solve the foll	owing pa	ir of linear	equations g	graphically:	x - y = 1, 2	$2\mathbf{x} + \mathbf{y} = 8.$			
	Also find the co-ordinates of the points where the lines represented by the above equation intersect									
	y – axis.									
					OR					
	For what values of a and b, the pair of linear equations has coincident lines on the graphical									
	representation	1.								
	2x - y = 5									
	(a – 2b) – (a +	⊦ b) y = 1	5							
	SECTION D									
	Section D consists of 4 questions of 5 marks each.									
Q.32.	(i) Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides									
	in distinct points, the other two sides are divided in the same ratio.									
	(ii) Using the above theorem prove that a line drawn through the mid-point of one side of a triangle									
	parallel to another side bisects the third side.									
Q.33.		tanθ	cotθ	<i>cosθ</i> +si	n <i>θ</i>					
	Prove that $\frac{1}{1}$	$-\tan\theta$	$1 - \cot \theta$	$\frac{1}{\cos\theta + \sin\theta}$	n <i>θ</i>					
				0	R					
					4					
	Prove: (cosec	c A – sin	A) (sec A	$-\cos A = $	tan A+cot	Ā				
Q.34.	A student not	ed the nu	mber of ca	rs passing t	hrough a sp	ot on a road	d for 100 pe	eriods each	of	
	3 minutes and	l summar	ized it in th	e table give	en below.		I		-	
	Find the mean	n and mo	de of the gi	ven data.						
	No. of cars	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80	
	Frequency	7	14	13	12	20	11	15	8	

	OR										
	For w	hat value of x	x, is the m	edian of th	e following	frequency	distributior	n 34·5?			
		Class	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70		
		Frequency	3	5	11	10	Х	3	2		
Q.35.	Prove	that $\sqrt{3}$ is irr	ational ar	nd hence pr	ove that 2 -	$-5\sqrt{3}$ is irr	ational.				
SECTION E											
Case study- based questions are compulsory.											
Q.36. Case study-based 1											
	A stopwatch was used to find the time that it took a group of students to run 100 m.										
	Tir	ne (in sec)									
	No	No. of students 8 10 13 6 3									
								and			
	Based	l on the above	e informa	tion answer	the follow	ing question	ns:				
	(i)	What is th	e upper li	mit of the	modal class	?			1m		
	(ii)	What is th	e sum of	lower limit	s of mediar	class and	modal class	?	1m		
	(iii)	Estimate t	he mean t	ime taken	by a studen	t to finish tl	he race.		2m		
					OR						
	Find the mode of the above data.										
		1							I	_	

Q.37.	Case s	tudy-based 2								
	Dipesh bought 3 notebooks and 2 pens for ₹ 80. His friend Ramesh said that price of each notebook									
	could b	be ₹ 25. Then three notebooks would cost ₹ 75, the two pens would cost ₹ 5 and \bigcirc	each pen							
	could be for ₹ 2.50. Another friend Amar felt that ₹ 2.50 for one pen was too little. It should be at									
	least ₹16. Then the price of each notebook would also be ₹16.									
	Aditya also bought the same types of notebooks and pens as Dipesh. He paid ₹ 110 for 4 notebooks									
	and 3 pens.									
	Dipesh Addya									
	Based on the above information answer the following questions:									
	(i) Is the estimation of Ramesh and Amar applicable for Aditya? 1m									
	(ii) Write the pair of linear equations for the situation given.									
	(iii)	What is the exact cost of notebook and pen?	2m							
		OR								
		What is the total cost of 15 notebooks?								
Q.38.	Case s	tudy-based 3								
	In a Gl	PS, the lines that run east-west are known as lines of latitude, and the lines running	g north-							
	south a	are known as lines of longitude. The latitude and the longitude of a place are its co	ordinates							
	and the	e distance formula is used to find the distance between two places. The distance be	etween two							
	paralle	l lines is approximately 150 km. A family from Uttar Pradesh planned a round trip	p from							
	Luckno	ow (L) to Puri (P) via Bhuj (B) and Nashik (N) as shown in the given figure below	v.							

	Answers										
Q.1	С	Q.2	А	Q.3	В	Q.4	В				
Q.5	С	Q.6	D	Q.7	В	Q.8	D				
Q.9	А	Q.10	D	Q.11	В	Q.12	D				
Q.13	В	Q.14	С	Q.15	В	Q.16	D				
Q.17	В	Q.18	С	Q.19	С	Q.20	b				
Q.21	x = 3, y = 2 x = 5, y = 0	Q.22	6: 36 am	Q.23	1	Q.24	$\frac{x^2 + 9x + 20}{\text{OR -2}}$				
Q.26	(i) 21 (ii) 4, 11	Q.27	10	Q.28	Zeroes are 5, $\frac{-3}{2}$	Q.31	(0, -1) (0, 8) OR a = 4, b = -1				
Q.34	Mean = 40.7 Mode = 44.7 OR x = 13	Q.36	(i) 60 (ii) 80 (iii) 43 sec OR 44	Q.37	 (i) Both estimations are wrong (ii) 3x + 2y = 80; 4x + 3y = 110 (iii) ₹20, ₹ 10 OR ₹30 	Q.38	(i) $\sqrt{74}$ units (ii) $(2, \frac{41}{5})$ (iii) isosceles OR $(0, \frac{25}{8})$				