INDIAN SCHOOL AL WADI AL KABIR
 Revision Question Paper
 Mid-term Examination (2023-24)

 Sub: MATHEMATICS

 Sub: MATHEMATICS}

Date: 10-09-2023
Class: IX

Time: 3 hours
Maximum marks: 80

General Instructions

1. This Question Paper has 5 Sections A-E.
2. Section A has 20 MCQs carrying 1 mark each
3. Section B has 5 questions carrying 02 marks each.
4. Section C has 6 questions carrying 03 marks each.
5. Section D has 4 questions carrying 05 marks each.
6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1,1 and 2 marks each respectively.
7. All Questions are compulsory. However, an internal choice in 2 Questions of 5 marks, 2 Questions of 3 marks and 2 Questions of 2 marks has been provided.
An internal choice has been provided in the 2marks questions of Section E.

SECTION A

Section A consists of $\mathbf{2 0}$ questions of $\mathbf{1}$ mark each.

Q.1.	The simplest rationalizing factor of $\frac{1}{\sqrt{12}}$ is						
	A	$\sqrt{12}$	B	$\sqrt{3}$	C	$\sqrt{4}$	D

Q.3.	The length of the sides of a triangle are $4 \mathrm{~cm}, 6 \mathrm{~cm}$ and 8 cm . The length of perpendicular from the opposite vertex to the side whose length is 8 cm , is equal to							
	A	$\frac{3}{4} \sqrt{15} \mathrm{~cm}$	B	$\frac{5}{4} \sqrt{15} \mathrm{~cm}$	C	$\frac{3}{4} \sqrt{5} \mathrm{~cm}$	D	$\frac{5}{4} \sqrt{3} \mathrm{~cm}$
Q.4.								
	A	15°	B	10°	C	19°	D	36°
Q.5.	If $\sqrt{3}=1.732$, evaluate $\frac{1}{2}+\sqrt{3}$							
	A	2.232	B	6.732	C	3.232	D	3.732
Q.6.	The area of an equilateral triangle is $3 \sqrt{3} \mathrm{~cm}^{2}$. The semi-perimeter of the triangle (in cm) is							
	A	$4 \sqrt{3} \mathrm{~cm}$	B	$3 \sqrt{3} \mathrm{~cm}$	C	$6 \sqrt{3} \mathrm{~cm}$	D	$9 \sqrt{3} \mathrm{~cm}$
Q.7.	If a number Y is greater than a number X and another number $\mathrm{Z}<0$, then							
	A	$\mathrm{X} \times \mathrm{Z}=\mathrm{Y} \times \mathrm{Z}$	B	$\mathrm{X} \div \mathrm{Z}=\mathrm{Y} \div \mathrm{Z}$	C	$\mathrm{X}-\mathrm{Z}=\mathrm{Y}$	D	$\mathrm{X}+\mathrm{Z}=\mathrm{Y}$
Q.8.	The value of $(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$ is							
	A	5	B	-1	C	-5	D	1
Q.9.	An angle is 18° less than its complementary angle. The measure of this angle is							
	A	36°	B	48°	C	83°	D	81°
Q.10.	A point $(x+2, x+4)$ lies in the first quadrant, the mirror image of this point with respect to x-axis is $(5,-7)$. What is the value of x ?							
	A	1	B	-1	C	2	D	3

Q.11.	The value of $\sqrt[4]{(16)^{-2}}$							
	A	$\frac{1}{16}$	B	$\frac{1}{4}$	C	$\frac{1}{2}$	D	4
Q.12.	A ___ may be drawn from any one point to any other point							
	A solid B			plane surface	C	straight line	D	None of these
Q.13.	If the supplement of an angle is three times its complement, then angle is							
	A	40°	B	35°	C	50°	D	45°
Q. 14.	If the point $\mathrm{A}(2,0), \mathrm{B}(-6,0)$ and $\mathrm{C}(3, \mathrm{a}-3)$ lie on x -axis, find the value of a .							
	A	2	B	3	C	6	D	0
Q.15.	To draw a histogram to represent the following frequency distribution, the adjusted frequency for the class 25-45 is:							
	Class interval			5-10 10-15	10-15	15-25	25-45	45-75
	Frequency			6 12		10	8	15
	A	2	B	3	C	5	D	6
Q. 16.	A student is given three sticks of length $6 \mathrm{~cm}, 5 \mathrm{~cm}, 3 \mathrm{~cm}$ respectively. His friend asked him to make a triangle with the help of these sticks and find its area.							
	A	$2 \sqrt{7} \mathrm{~cm}^{2}$	B	$7 \sqrt{14} \mathrm{~cm}^{2}$	C	$4 \sqrt{14} \mathrm{~cm}^{2}$	D	$2 \sqrt{14} \mathrm{~cm}^{2}$
Q.17.	If x is the midpoint and 1 is the upper limit of a class in a continuous frequency distribution, then the lower limit of the class is							
	A	$\mathrm{x}-1$	B	$3 \mathrm{x}+8$	C	$2 \mathrm{x}+2$	D	$2 \mathrm{x}-1$
Q.18.	The point whose ordinate is 8 and lies on y-axis is							
	A	$(0,8)$	B	$(8,0)$	C	$(5,8)$	D	$(8,5)$

	DIRECTION: In question numbers 19 and 20, a statement of Assertion (A) is followed by statement of Reason (R). Choose the correct option a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A) (b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A) (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true.	
Q. 19.	Statement A (Assertion): The height of the triangle is 18 cm and its area is $72 \mathrm{~cm}^{2}$. Its base is 8 cm Statement \boldsymbol{R} (Reason): Area of a triangle $=\frac{1}{2} \mathrm{x}$ base x height	
Q. 20.	Statement \boldsymbol{A} (Assertion): 7 is a rational number Statement \boldsymbol{R} (Reason): The square root of a rational number is irrational.	
	SECTION B	
	Section B consists of 5 questions of 2 marks each.	
Q.21.	Show that $2.2 \overline{18}$ can be expressed in the form $\frac{p}{q}$, where p and q are integers and $\mathrm{q} \neq 0$ OR Find the value of $\frac{4}{216^{\frac{-2}{3}}}-\frac{1}{256^{\frac{-3}{4}}}$	
Q.22.	Find the area of a triangle whose perimeter is 180 cm and its two sides are 80 cm and 18 cm . Calculate the altitude of the triangle corresponding to its shortest side.	
Q.23.	State any two Euclid's (i) axioms (ii) postulates	
Q. 24	In the given figure $A B \\| C D$. Find the value of x.	

	OR In the figure $\mathrm{AB} \\| \mathrm{CD}$ find the value of $\mathrm{z}, \angle \mathrm{DNM}$ and $\angle \mathrm{CNM}$.
Q.25.	Plot the points $(-3,0),(5,0),(0,4)$ on Cartesian plane. Name the figure formed by joining these points and find its area.
	SECTION C
	Section \mathbf{C} consists of 6 questions of 3 marks each.
Q.26.	In the given figure, $\angle 1=\angle 2$ and $\angle 3=\angle 4$. Show that $\angle \mathrm{ABC}=\angle \mathrm{DBC}$. State the Euclid's axiom used.
Q.27.	Represent $\sqrt{8.2}$ geometrically on the number line. OR Represent $\sqrt{3}$ on the number line.
Q.28.	In which quadrant or on which axis do each of the following points lie? P (9,0), Q (-5, -5), R (4,3), S (-2,4), T (8, -6), U (0,6)
Q.29.	Prove that if two lines intersect each other, then the vertically opposite angles are equal. OR If a transversal intersects two lines such that the bisectors of a pair of corresponding angles are parallel, then prove that the two lines are parallel.

Q.34.	From the given figure, write a) the coordinates of the points B and F . b) the point identified by the coordinates $(1,1)$ c) the abscissa of the points D and H . d) the ordinates of the points A and C . e) the perpendicular distance of the point G from the x -axis.			
Q.35.	(i) In the figure, if $\mathrm{AB} A B \\| C F$ and $C D \\| F E$, then find the value of x . (ii) In the figure, $\mathrm{AB} \\| \mathrm{CD}, \mathrm{EF} \perp \mathrm{CD}$ and $\angle \mathrm{GFC}=130^{\circ}$. Find x, y and z .			

	(i)	Name three points which are collinear.	1 m
	(ii)	Name a pair of adjacent complementary angles.	1 m
(iii)	Find the measure of \angle CLA.	2 m	
OR	Find the measure of reflex angle DLY.		

Answers							
Q. 1	B	Q. 2	A	Q. 3	A	Q. 4	A
Q. 5	A	Q. 6	B	Q. 7	C	Q. 8	B
Q. 9	A	Q. 10	D	Q. 11	B	Q. 12	C
Q. 13	D	Q. 14	B	Q. 15	A	Q. 16	D
Q. 17	D	Q. 18	A	Q. 19	a	Q. 20	c
Q. 21	$\frac{122}{55}$ OR 80	Q. 22	$720 \mathrm{~cm}^{2}, 80 \mathrm{~cm}$	Q. 24	$\begin{gathered} 60^{\circ} \text { OR } \\ 55^{\circ}, 123^{\circ}, 57^{\circ} \end{gathered}$	Q. 25	Triangle, 16 square units
Q. 28	$\begin{gathered} \text { X-axis, III } \\ \text { Quadrant, I, II, IV, } \\ \text { Y-axis } \end{gathered}$	Q. 30	16	Q. 32	5 OR 1	Q. 34	a) $(-5,-4)(6,0)$ b) D c) 1,0 d) $1,-2$ e) 4 units
Q. 35	$\begin{gathered} \text { (i) } 75^{\circ} \text { (ii) } 150^{\circ} \text {, } \\ 50^{\circ}, 40^{\circ} \end{gathered}$	Q. 36	(i) $24 m^{2}$ (ii) $3696 \mathrm{~m}^{2}$ (iii) $3024 \mathrm{~m}^{2}$ OR No	Q. 37	(i) $(4,1)$ (ii) $(7,1)$ (iii) 3 km OR 4 km	Q. 38	(i) $\mathrm{A}, \mathrm{L}, \mathrm{B}$ (ii) $\angle \mathrm{XLB}, \angle \mathrm{BLD}$ (iii) 57° OR 117°

